ON PASTING BALLS TO HANDLEBODIES

BY C. D. FEUSTEL
Communicated by Franklin P. Peterson, November 17, 1969

Throughout this paper all spaces will be simplicial complexes and all maps will be piecewise linear. We shall denote the boundary, closure, and interior of a space X by $\operatorname{bd}(X), \operatorname{cl}(X)$ and $\operatorname{int}(X)$ respectively. Let X be a space and Y a connected subspace. Then we shall denote the natural map induced by inclusion from $\pi_{1}(Y)$ into $\pi_{1}(X)$ by $\pi_{1}(Y) \rightarrow \pi_{1}(X)$.

We shall say that a submanifold X of a manifold Y is properly embedded in Y if $X \cap \operatorname{bd}(Y)=\operatorname{bd}(X)$. A handlebody is a 3-manifold homeomorphic to the regular neighborhood of a compact 1-complex embedded in E^{3}. If T_{n} is a handlebody and l is a simple loop in $\operatorname{bd}\left(T_{n}\right)$, we can attach a disk to T_{n} by identifying the boundary of the disk with l. We may attach a thickened disk or a ball in a similar way to T_{n} and obtain a 3-manifold. When we perform the operation above we shall say that we have pasted a ball to T_{n} along l. We shall denote the smallest normal subgroup of $\pi_{1}\left(T_{n}\right)$ containing [l] by $N(l)$.

It is the purpose of this article to prove:
Theorem. Let T_{n} be a handlebody of genus n. Let l be a simple loop in $\mathrm{bd}\left(T_{n}\right)$ such that $\pi_{1}\left(T_{n}\right) / N(l)$ is free on $n-1$ generators. Then the 3-manifold obtained by pasting a ball to T_{n} along l is a handlebody of genus $n-1$.

The author would like to thank C. D. Papakyriakopoulos for suggesting that the theorem above be stated so that its relationship to the classical Poincaré Conjecture would be clear. The author would also like to thank P. Stebe for locating the algebraic result due to J. H. C. Whitehead which is cited below.

Proof. It follows from a theorem of Whitehead (see [2, p. 167, Theorem N3]) that [l] can be taken to be a generator of $\pi_{1}\left(T_{n}\right)$. Let T_{n}^{\prime} be homeomorphic to T_{n} under a map $h: T_{n} \rightarrow T_{n}^{\prime}$. Then we can paste T_{n} to T_{n}^{\prime} along regular neighborhoods in $\mathrm{bd}\left(T_{n}\right), \mathrm{bd}\left(T_{n}^{\prime}\right)$ of l and $h(l)$ respectively, to obtain a 3 -manifold M.

It is a consequence of Van Kampen's Theorem that $\pi_{1}(M)$ is free on $2 n-1$ generators. Now $\pi_{1}(\operatorname{bd}(M))$ is not free, so $\pi_{1}(\operatorname{bd}(M))$ $\rightarrow \pi_{1}(M)$ is not one-one. It follows from the loop theorem [3] that there is a disk properly embedded in M such that $\operatorname{bd}(D)$ is not

[^0]Key Words and Phrases. 3-manifold, Poincaré conjecture, handlebody.

[^0]: AMS Subject Classifications. Primary 5701, 5560.

