ON STAR-INVARIANT SUBSPACES

BY P. R. AHERN¹ AND D. N. CLARK²

Communicated by Gian-Carlo Rota, September 22, 1969

Let H^2 denote the usual Hardy class of functions holomorphic in the unit disk. Let M denote a closed, invariant subspace of H^2 . The theory of such subspaces is well known; every such M has the form $M = \phi H^2$, where $\phi \in H^2$ is an inner function, $\phi = Bs\Delta$, with

$$B(z) = \prod_{\nu=1}^{\infty} \frac{\bar{a}_{\nu}}{|a_{\nu}|} \frac{z - a_{\nu}}{1 - \bar{a}_{\nu}z}, \qquad s(z) = \exp\left\{-\int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\sigma_{s}(\theta)\right\},$$
$$\Delta(z) = \exp\left\{-\sum_{\nu=1}^{\infty} r_{\nu} \frac{e^{i\theta\nu} + z}{e^{i\theta\nu} - z}\right\}$$

where $\{a_{\nu}\}$ is a Blaschke sequence $(\bar{a}_{\nu}/|a_{\nu}| \equiv 1 \text{ if } a_{\nu} = 0), \sigma_s$ is a finite, positive, continuous, singular measure, and $r_{\nu} \ge 0, \quad \sum r_{\nu} < \infty$.

Less is known about the "star-invariant" subspaces $M^{\perp} = H^2 \ominus M$. In this announcement, we outline some results we have obtained recently concerning the subspace M^{\perp} . Full details and proofs will appear elsewhere.

1. A unitary operator. In our first theorem, we represent M^{\perp} unitarily as the sum of the spaces $L^2(d\sigma_B)$, $L^2(d\sigma_s)$ and $L^2(d\sigma_{\Delta})$. Here σ_B is the measure on the positive integers which assigns a mass $1-|a_k|$ to the integer k; σ_{Δ} is the measure on $[0, \infty]$ which is r_{ε} times Lebesgue measure on the interval [k-1, k]; and σ_s is the measure associated with s above.

In the special case $\phi = B$, our unitary operator $V_B: L^2(d\sigma_B) \rightarrow (BH^2)^{\perp}$ is given by

$$V_B(\{c_n\})(z) = \sum_{n=1}^{\infty} c_n (1 + |a_n|)^{1/2} B_n(z) (1 - \bar{a}_n z)^{-1} (1 - |a_n|).$$

Here B_n is the partial product of B with zeros a_1, \dots, a_{n-1} . The fact that V_B is unitary is a consequence of the simple and well-known fact that the functions $h_n(z) = (1 - |a_n|^2)^{1/2} B_n(z)/(1 - \bar{a}_n z)$ form an orthonormal basis of $(BH^2)^{\perp}$.

AMS Subject Classifications. Primary 4630; Secondary 3065, 3067, 4725.

Key Words and Phrases. Invariant subspace, inner function, L^2 space, shift operator, restricted shift operator.

¹ Supported by NSF Grant GP-6764.

² Supported by NSF Grant GP-9658.