QUASI-ISOMETRIC MEASURES AND THEIR APPLICATIONS ${ }^{1}$

BY P. MASANI

1. Introduction 427
Part I. c.a.o.s. measures 434
2. C.a.o.s. measures and integration 434
3. A new approach to L_{2}-transform theory 440
4. The Hilbert transform 441
5. The Watson transform 443
6. The Fourier-Plancherel transform 446
Part II. c.a.q.I. MEASURES 448
7. On situations with multiplicity exceeding 1 448
8. W-to- ${ }^{C} \mathrm{C}$ c.a.q.i. measures 449
9. On the Hilbert space $L_{2}(\Lambda, \circlearrowleft, M ; W)$ 454
10. Integration with respect to c.a.q.i. measures 464
11. Theory for locally compact semigroups and groups 486
12. A new approach to representation theory 497
13. The Fourier-Plancherel transform for vectorial functions 498
14. Spectral representations 503
15. Linear stationary causal systems and Cooper's theorem 511
16. Unfinished work 521
REFERENCES 525

1. Introduction

This paper is devoted to certain uses of integration theory which emerge when the measures involved are vector- or operator-valued. These uses, as yet generally unfamiliar, are significant in three ways:
(1) They yield explicit formulations for many of the representation theorems of functional analysis;

[^0]
[^0]: An expanded version of an address delivered before the Cincinnati meeting of the Society by invitation of the Committee to Select Hour Speakers for Western Sectional Meetings, April 18, 1969; received by the editors October 29, 1969.

 AMS Subject Classifications. Primary 2825, 2850, 4250, 4428, 4615, 4730; Secondary $4251,4430,4645,6050$.

 Key Words and Phrases. Measures and bases, orthogonally scattered measures, transition from the discrete to the continuous, random measures, stochastic integration, representation theory, wandering subspace, eigen-packets, pseudo-eigenfunction expansions, general L_{2}-transform theory, Hilbert transform, Watson transform, Fourier-Plancherel transform, nonnegative hermitian measures, quasi-isometric measures, stationary measures over semigroups and groups, spectral representations, stationary causal systems, Stone's Theorem, Cooper's Theorem, Imprimitivity Theorem.
 ${ }^{1}$ This work was supported by the National Science Foundation under Grant GP 7808.

