DIFFEOMORPHISMS FOR HILBERT MANIFOLDS AND HANDLE DECOMPOSITION

BY DAN BURGHELEA1

Communicated by Richard Palais, June 6, 1969

1. We announce here the following result:

Two homotopic diffeomorphisms of a paracompact separable hilbert manifold of infinite dimension are isotopic.

(1) In this paper, a hilbert manifold (h-manifold) with or without boundary is always hausdorff, paracompact, separable C^{∞} -differentiable and with the infinite dimensional separable hilbert space H as local model.

Let $M(M, \partial M)$ be an h-manifold (with boundary), $X(X, \partial X)$, an h-manifold or finite dimensional manifold (with boundary).

- (a) A closed imbedding $\phi: X \to M(\phi: (X, \partial X) \to (M, \partial M))$ is a C^{∞} -injective map $\phi: X \to M$, such that the differential $d_*\phi(x)$ is injective for any x, and $\phi(M)$ is closed (for the case with boundary we ask more, $\phi^{-1}(\partial M) = \partial M$ and ϕ is transversal to ∂M in ∂M).
- (b) A closed tubular neighborhood of a closed imbedding of infinite codimension, $\phi: X \to M$, $(\phi: (X, \partial X) \to (M, \partial M))$, is a closed imbedding $\phi: X \times D^{\infty} \to M(\phi: (X, \partial X) \times D^{\infty} \to (M, \partial M))$ which extends to an open imbedding $\phi: X \times H \to M(\phi: (X, \partial X) \times H \to (M, \partial M))$ with $\phi^{-1}(\partial M) = \partial X \times H$.

Remarks. (1) Any closed imbedding of infinite codimension has closed tubular neighborhoods [3].

- (2) For ϕ_1 and ϕ_2 two closed tubular neighborhoods of a closed imbedding $\phi: X \to M(\phi: (X, \partial X) \to (M, \partial M))$, there exists an isotopy $h_t: M \to M$, $(h_t: (M, \partial M) \to (M, \partial M))$, $0 \le t \le 1$, such that $h_0 = \mathrm{id}$, $h_t \cdot \phi = \phi$ and $h_1 \cdot \phi_1 = \phi_2$ [2, Theorem 4.1]. By an isotopy as in [2], we mean a level preserving C^{∞} -diffeomorphism $h: M \times I \to M \times I$, $(h: (M, \partial M) \times I \to (M, \partial M) \times I)$, i.e., $h(x, t) = (h_t(x), t)$.
- (c) Let $M(M, \partial M)$ be an h-manifold (with boundary); A closed imbedded submanifold with boundary $(A, \partial A)$, such that $A \subset I$ int M and $A \setminus \partial A$ is open submanifold of M, is called a zero-codimensional closed submanifold (0-c-submanifold).

The 0-c-submanifold $(B, \partial B)$ is called a collar neighborhood of the 0-c-submanifold $(A, \partial A)$, if $A \subset \text{Int } B$ and $(B \setminus \text{Int } A, \partial (B \setminus \text{Int } A))$ is diffeomorphic to $(\partial A \times [0, 1], \partial A \times \partial [0, 1])$.

¹ The author was partially supported by the National Science Foundation.