BAER SUBPLANES AND BLOCKING SETS

BY A. BRUEN

Communicated by H. S. M. Coxeter, September 19, 1969

A blocking set S in a projective plane π is a subset of the points of π such that every line of π contains at least one point of S and at least one point which is not in S. Denoting the number of points in S by |S| our main result, obtained by purely combinatorial means, is the following: If π is finite of square order, say m^2 then $|S| \ge m^2 + m + 1$ and if $|S| = m^2 + m + 1$ then the points of S are the points of a subplane of π of order m (a Baer subplane). In this connection we first of all prove the following

THEOREM. Baer subplanes form blocking sets.

PROOF. Suppose π is a plane of order m^2 which contains a subplane S of order m. Since any line of π contains at most m+1 points of S we have that every line of π contains at least one point which is not in S. Let l be any line of π and P be any point of l which is not in S. Then there is at most one line of S through P, S being a subplane. Also since any two points of π are connected by a unique line, the m^2+m+1 points of S are contained in the m^2+1 lines of π through P. If l contained no point of S, the lines of π through P would account for at most $(m+1)+(m^2-1)\cdot 1=m^2+m$ points of S. Thus l must contain at least one point of S establishing our theorem.

We now proceed to the main result. π denotes a plane of order n and S is a blocking set in π . S-l denotes all those points P such that P is contained in S but not in l, and |S-l| means the number of such points P; similarly for l-S, |l-S|.

LEMMA 1. No line of π contains more than |S| - n points of S.

PROOF. Let *l* be any line of π and suppose *l* contains exactly *t* points of *S*. Since *S* is a blocking set there is at least one point *R* in *l*-*S*. There are *n* lines of π through *R* besides *l*, each containing at least one point of *S*. Thus always $|S| \ge t+n$.

LEMMA 2. Let a objects be packed into b boxes such that each box contains at least one object, with $b \leq a < 2b$. Define a function f on the objects X as follows:

AMS Subject Classifications. Primary 5070, 5060; Secondary 0527.

Key Words and Phrases. Finite projective plane, Baer subplane, incidences, blocking sets.