SURFACES OF VERTICAL ORDER 3 ARE TAME

BY R. A. JENSEN AND L. D. LOVELAND ${ }^{1}$

Communicated by Orville Harrold, July 17, 1969
We define a 2 -sphere S in E^{3} to have vertical order n if each vertical line intersects S in no more than n points. The main result in this paper is the following

Theorem 1. If S is a 2-sphere in E^{3} having vertical order 3 , then S is tame.

This is the best theorem possible in the sense that examples are known of wild 2-spheres in E^{3} having vertical order 4 [5]. In Theorem 2 to follow we generalize Theorem 1 to compact 2-manifolds in E^{3}.

Previous work concerned with the nature of the intersection of vertical lines with a 2 -sphere in E^{3} has been done by Bing [1 , Theorem 7.3]; [3].

Proof of Theorem 1. The vertical line in E^{3} containing the point x is denoted by L_{x}, and we refer to the bounded component of $E^{3}-S$ as Int S. If $x \in \operatorname{Int} S$ it is easy to see that $L_{x} \cap S$ consists of two points. In this case the point with largest third coordinate is denoted by U_{x} and the other by V_{x}. Welet $U=\left\{U_{x} \mid x \in \operatorname{Int} S\right\}$ and $V=\left\{V_{x} \mid x \in \operatorname{Int} S\right\}$, and we note that U and V are both open subsets of S. A bicollar can be constructed for a neighborhood of each point of $U \cup V$ using short vertical intervals. Thus S is locally tame at each point of $U \cup V$ [2].

Let $R=S-(U \cup V)$. The proof that S is tame is completed by showing that R is a tame simple closed curve, since a 2 -sphere that is locally tame modulo a tame simple closed curve is known to be tame [4].

It will follow that R is a simple closed curve once we show that each of U and V is connected and that each point $p \in R$ is arcwise accessible from both U and V [7, p. 233]. Let θ be an arc in Int S $\cup\{p\}$ such that p is an endpoint of θ. We now show that the vertical projection σ of θ into $U \cup\{p\}$ is continuous. To accomplish this we take a sequence $\left\{x_{i}\right\}$ of points in θ converging to x_{0} and we prove that the sequence $\left\{\sigma\left(x_{i}\right)\right\}$ converges to $\sigma\left(x_{0}\right)$. Let $L_{i}(i=0,1,2, \cdots)$ be the vertical interval from x_{i} to $\sigma\left(x_{i}\right)$ (if $x_{i}=p$, then L_{i} is degenerate),

[^0]
[^0]: AMS Subject Classifications. Primary 5705; Secondary 5478.
 Key Words and Phrases. Tame 2-spheres, tame surfaces, surfaces in $E^{\mathbf{3}}$.
 ${ }^{1}$ This research was partially supported by the National Science Foundation under GP-8454.

