A NECESSARY AND SUFFICIENT CONDITION FOR ORDERS IN DIRECT SUMS OF COMPLETE SKEWFIELDS TO HAVE ONLY FINITELY MANY NONISOMORPHIC IN-DECOMPOSABLE INTEGRAL REPRESENTATIONS

BY K. W. ROGGENKAMP

Communicated by Irving Reiner, May 15, 1969

Let K be an algebraic number field with ring of integers R. For an *R*-order Λ in the semisimple *K*-algebra *A* it seems to be one of the most important problems-from the viewpoint of integral representations—to characterize those orders Λ , for which the number $n(\Lambda)$ of nonisomorphic indecomposable Λ -lattices is finite. This problem is far from having a satisfying solution. However, a breakthrough came at the end of 1967, when Drozd-Roiter [3] and Jakobinski [5] gave, independently of each other, a necessary and sufficient condition for the finiteness of $n(\Lambda)$, in case Λ is commutative. Whereas Jakobinski's methods seem to be restricted to the commutative case, the methods of Drozd-Roiter bear the possibilities of a generalization to the noncommutative case. This note shall be a small contribution in that direction: We shall give here a necessary and sufficient condition for the finiteness of $n(\Lambda)$ in case Λ is an order in a direct sum of skewfields over a *P*-adic number field. We shall first fix the notation and then sketch the proof of our theorem; a more explicit version is going to be published later (cf. [6], [7]).

R: a complete discrete rank one valuation ring with finite residue class field,

K: the quotient field of R,

 D_i : $1 \leq i \leq n$: finite dimensional separable skewfields over K, $A = \sum_{i=1}^{n} \oplus D_i$,

 Γ : the unique maximal *R*-order in *A*,

 Λ : an *R*-order in *A*,

 $N = \operatorname{rad} (\Lambda)$: the Jacobson radical of Λ ,

 $_{\Lambda}\mathfrak{M}^{j}$: the category of finitely generated unitary left Λ -modules, $_{\Lambda}\mathfrak{O}^{j}$: the category of the projective modules in $_{\Lambda}\mathfrak{M}^{j}$,

 $_{\Lambda}\mathfrak{M}^{\mathfrak{o}}$: the category of Λ -lattices; i.e., $M \in _{\Lambda}\mathfrak{M}^{\mathfrak{o}}$ with $M \in _{R}\mathfrak{O}^{\mathfrak{o}}$,

 $n(\Lambda)$: the number of nonisomorphic indecomposable Λ -lattices,

 $\mu_{\Lambda}(X)$: the minimal number of generators of $X \in {}_{\Lambda}M^{f}$,

 $\operatorname{rad}_{\Lambda}(X)$: the intersection of the maximal left Λ -submodules of $X \in_{\Lambda} \mathfrak{M}^{\prime}$.