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S. Smale has conjectured, in an unpublished paper, that the Morse 
Theory on Hubert mainfolds due to Palais and Smale [ l ] , [4] can be 
extended to Banach manifolds. Under a different definition of 
nondegeneracy of critical points we have been able to make this ex
tension. The result also extends Morse theory on Hubert manifolds 
to a wider class of functions. I wish to thank R. Palais for several 
helpful suggestions. 

Let ƒ be a real-valued C1 function on a C1 Banach manifold X. A 
critical point x of ƒ is said to be weakly nondegenerate if there exists 
a neighborhood U of x and a hyperbolic linear isomorphism Lx: 
TX(X)-+TX(X) such that in the coordinate system of £7, dfx+v(Lxv)>0 
for all x+v in U, v?*0. Then TX(X) splits into the direct sum of two 
invariant subspaces of Lx, TX(X)==:TX(X)+®TX(X)-. such that the 
spectrum of Lx on TX(X)+ lies in the right half plane and the spectrum 
of Lx on TX(X)~. lies in the left half plane. The index of ƒ at x is de
fined to be dim TX{X)-, and this term is well defined. A nondegener
ate critical point of a function on a Hubert manifold is weakly 
nondegenerate. 

THEOREM 1. Let f be a C2 function on a C2 paracompact manifold 
X without boundary modeled on a separable Banach space B. We as
sume that B has C2 partitions of unity and a metric which is C2 away 
from 0. If, in addition, 

(a) ƒ satisfies condition (C) of Palais and Smale with respect to a 
complete Finsler metric on X, and 

(b) q > q' are not critical values, and all the critical points inf~l{{q, q')) 
are weakly nondegenerate of finite index, 

then there exists a homeomorphism 0: f~l\q, — oo)—/"1^ ' , — <*>)\Jhi 
where a handle hi of index qi is added for each one of the finite number 
of critical points XiÇzf^dq, q')) of index q^ 

REMARK. In the case of an infinite index, a similar result holds, 
provided that 

dfx+v(Lxv) > a(\\v\\B) for 0 ^ v G TX(M)„ C\ U 

where a is a continuous function from R+—*R+. 
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