MORSE THEORY ON BANACH MANIFOLDS

BY K. UHLENBECK
Communicated by Richard Palais, June 23, 1969

S. Smale has conjectured, in an unpublished paper, that the Morse Theory on Hilbert mainfolds due to Palais and Smale [1], [4] can be extended to Banach manifolds. Under a different definition of nondegeneracy of critical points we have been able to make this extension. The result also extends Morse theory on Hilbert manifolds to a wider class of functions. I wish to thank R. Palais for several helpful suggestions.

Let f be a real-valued C^{1} function on a C^{1} Banach manifold X. A critical point x of f is said to be weakly nondegenerate if there exists a neighborhood U of x and a hyperbolic linear isomorphism L_{x} : $T_{x}(X) \rightarrow T_{x}(X)$ such that in the coordinate system of $U, d f_{x+v}\left(L_{x} v\right)>0$ for all $x+v$ in $U, v \neq 0$. Then $T_{x}(X)$ splits into the direct sum of two invariant subspaces of $L_{x}, T_{x}(X) \cong T_{x}(X)_{+} \oplus T_{x}(X)_{-}$such that the spectrum of L_{x} on $T_{x}(X)_{+}$lies in the right half plane and the spectrum of L_{x} on $T_{x}(X)$ _ lies in the left half plane. The index of f at x is defined to be $\operatorname{dim} T_{x}(X)_{-}$, and this term is well defined. A nondegenerate critical point of a function on a Hilbert manifold is weakly nondegenerate.

Theorem 1. Let f be a C^{2} function on a C^{2} paracompact manifold X without boundary modeled on a separable Banach space B. We assume that B has C^{2} partitions of unity and a metric which is C^{2} away from 0. If, in addition,
(a) f satisfies condition (C) of Palais and Smale with respect to a complete Finsler metric on X, and
(b) $q>q^{\prime}$ are not critical values, and all the critical points in $f^{-1}\left(\left(q, q^{\prime}\right)\right)$
are weakly nondegenerate of finite index,
then there exists a homeomorphism $\theta: f^{-1}[q,-\infty) \cong f^{-1}\left[q^{\prime},-\infty\right) \cup h_{i}$ where a handle h_{i} of index q_{i} is added for each one of the finite number of critical points $x_{i} \in f^{-1}\left(\left(q, q^{\prime}\right)\right)$ of index q_{i}.

Remark. In the case of an infinite index, a similar result holds, provided that

$$
d f_{x+v}\left(L_{x} v\right)>\alpha\left(\|v\|_{B}\right) \quad \text { for } \quad 0 \neq v \in T_{x}(M)_{-} \cap U
$$

where α is a continuous function from $R^{+} \rightarrow R^{+}$.

