LOCALIZED SOLUTIONS OF NONLINEAR WAVE EQUATIONS

BY ERIC H. ROFFMAN¹

Communicated by M. H. Protter, June 2, 1969

We consider complex valued solutions ϕ of nonlinear wave equations of the form

(1)
$$\Box \phi = \phi_{tt} - \Delta \phi = -\phi v(|\phi|^2)$$

where v is the derivative of a positive definite potential V. That is

(2)
$$\frac{dV(a)}{da} = v(a)$$
 and $V(a) \ge 0$ with $V(a) = 0$ iff $a = 0$.

We suppose $v(0) = m^2 > 0$.

A solution ϕ with finite energy is called localized if there is an $\epsilon > 0$ such that

(3)
$$\sup_{x} |\phi(x, t)| = M(t) > \epsilon$$

whenever ϕ exists.

THEOREM. If, for some a_0

$$V(a_0) < m^2 a_0$$

then equation (1) has localized solutions.

The proof is based on the conservation of energy & and charge Q

~

(5)
$$\delta = \int \left\{ |\phi_t|^2 + \sum_{i=1}^N |\phi_{x_i}|^2 + V(|\phi|^2) \right\} dx,$$

(6)
$$Q = \operatorname{Im} \int (\phi_t \bar{\phi}) dx.$$

Suppose that $|\phi|^2 < \epsilon$. Then, from (2)

(7)
$$V(|\phi|^2) > (m^2 - \delta) |\phi|^2$$

where δ tends to zero if ϵ does.

By the Schwartz inequality and (7) we easily deduce that

¹ Supported in part by AEC Contract number AT(30-1) 3668-B.

I would like to thank Professor P. D. Lax for help in preparing this article for publication.