COERCIVENESS OF THE NORMAL BOUNDARY PROBLEMS FOR AN ELLIPTIC OPERATOR

BY GERD GRUBB

Communicated by Avner Friedman, July 24, 1969

Let Ω be a bounded open subset of \mathbb{R}^n , with smooth boundary Γ (the theory is easily extended to compact manifolds). Let A be a differential operator of order 2m ($m \ge 1$), with coefficients in $C^{\infty}(\overline{\Omega})$, such that A is uniformly strongly elliptic and formally selfadjoint in $\overline{\Omega}$. We consider the $L^2(\Omega)$ -realizations of A, determined by boundary conditions of the form

(1)
$$\gamma_{j}u - \sum_{k \in K, k < j} F_{jk}\gamma_{k}u = 0, \quad j \in J;$$

here J and K are complementing subsets, each consisting of m elements, of the set $M = \{0, \dots, 2m-1\}$; the F_{jk} denote (pseudo-) differential operators in Γ of orders j-k; and the γ_k denote the standard boundary operators: $\gamma_0 u = u |_{\Gamma}$, $\gamma_k u = D_n^k u |_{\Gamma}$, for $u \in C^{\infty}(\overline{\Omega})$, where $iD_n = \partial/\partial n$ is the interior normal derivative at Γ . (1) is a reduced form of the usual *normal* type of boundary conditions, generalized to include pseudo-differential operators in Γ .

Let \tilde{A} be the operator in $L^2(\Omega)$ defined by

(2)
$$D(\tilde{A}) = \{ u \in L^2(\Omega) \mid Au \in L^2(\Omega), u \text{ satisfies (1)} \}, \\ \tilde{A}u = Au \text{ on } D(\tilde{A}).$$

(The definition is given a sense by the general concept of boundary value introduced by Lions-Magenes [7]). We shall give below a necessary and sufficient condition on the operators F_{jk} (together with A) in order that \tilde{A} be *m*-coercive, i.e. satisfies

(3)
$$\operatorname{Re}(\tilde{A}u, u) + \lambda \|u\|_{0}^{2} \geq c \|u\|_{m}^{2}, \quad \forall u \in D(\tilde{A}),^{1}$$

for some c > 0, $\lambda \in \mathbb{R}$. The condition has two parts:

1° it is necessary that the F_{jk} with j and $k \ge m$ are certain functions of the F_{jk} with j and k < m in order that \tilde{A} be even lower bounded (Theorem 1);

AMS Subject Classifications. Primary 3545, 3519, 3523; Secondary 3504.

Key Words and Phrases. Coerciveness inequality, normal boundary conditions, elliptic operator, formally selfadjoint, nonselfadjoint, lower bounded realization, variational, pseudo-differential operator, principal symbol.

¹ Here $||u||_{\bullet}$ denotes the norm in the Sobolev space $H^{\bullet}(\Omega)$, $s \in \mathbb{R}$.