ON A CONJECTURE OF G. D. MOSTOW AND THE STRUCTURE OF SOLVMANIFOLDS

BY L. AUSLANDER AND R. TOLIMIERI

Communicated by Nathan Jacobson, June 10, 1969

Introduction. Let G be a connected solvable Lie group and let Γ be a closed subgroup of G. Then the quotient manifold G/Γ is called a solvmanifold. G. D. Mostow in a fundamental paper [6] proved

THEOREM 1. Let G/C be a compact solvmanifold, let N be the nil-radical of G, and let Γ contain no nontrivial, connected subgroup normal in G. Then

(a) N contains the identity component of Γ ,

(b) $N/N \cap \Gamma$ is compact,

(c) $N\Gamma$, the group generated by N and Γ in G, is closed, in G.

Mostow has also conjectured the following:

MOSTOW CONJECTURE. A solvmanifold is a vector bundle over a compact solvmanifold.

In this paper we will announce results that yield a new proof of Theorem 1 and a proof of the Mostow Conjecture, as well as many of the known results on the structure of solvmanifolds as given in [1], [3] and [4] for instance. An outline of the proof of the Mostow Conjecture and the proof of Theorem 1 are given in §3.

1. Definitions and resume of known facts. Let N be a connected, simply connected nilpotent Lie group. A closed subgroup of N will be called a CN group. According to Malcev a CN group Δ can be characterized as a torsion free nilpotent group such that if Δ_0 is the identity component of Δ then Δ/Δ_0 is finitely generated. Further, if Δ is a CN group there exists a unique connected nilpotent Lie group Δ_R such that $\Delta_R \supset \Delta$ and Δ_R/Δ is compact. If Δ is a CN group with Δ_0 trivial we will call Δ an FN group.

In [3] and [6] it was shown that a group Γ is the fundamental group of a compact solvmanifold if and only if Γ satisfies an exact sequence

(1)
$$1 \to \Delta \to \Gamma \to Z^* \to 1$$

where Δ is an *FN* group and Z[•] denotes *s* copies of the integers. Fundamental groups of compact solvmanifolds will be called *FS* groups. If Δ in (1) is a *CN* group we will call Γ a *CS* group. If Γ is a *CS* group satisfying the exact sequence (1) there is a unique group Γ_R satisfying the exact diagram: