ON A CONJECTURE OF G. D. MOSTOW AND THE STRUCTURE OF SOLVMANIFOLDS

BY L. AUSLANDER AND R. TOLIMIERI

Communicated by Nathan Jacobson, June 10, 1969
Introduction. Let G be a connected solvable Lie group and let Γ be a closed subgroup of G. Then the quotient manifold G / Γ is called a solvmanifold. G. D. Mostow in a fundamental paper [6] proved

Theorem 1. Let $G /$ Cbe a compact solvmanifold, let N be the nil-radical of G, and let Γ contain no nontrivial, connected subgroup normal in G. Then
(a) N contains the identity component of Γ,
(b) $N / N \cap \Gamma$ is compact,
(c) $N \Gamma$, the group generated by N and Γ in G, is closed, in G.

Mostow has also conjectured the following:
Mostow Conjecture. A solvmanifold is a vector bundle over a compact solvmanifold.

In this paper we will announce results that yield a new proof of Theorem 1 and a proof of the Mostow Conjecture, as well as many of the known results on the structure of solvmanifolds as given in [1], [3] and [4] for instance. An outline of the proof of the Mostow Conjecture and the proof of Theorem 1 are given in §3.

1. Definitions and resume of known facts. Let N be a connected, simply connected nilpotent Lie group. A closed subgroup of N will be called a $C N$ group. According to Malcev a $C N$ group Δ can be characterized as a torsion free nilpotent group such that if Δ_{0} is the identity component of Δ then Δ / Δ_{0} is finitely generated. Further, if Δ is a $C N$ group there exists a unique connected nilpotent Lie group Δ_{R} such that $\Delta_{R} \supset \Delta$ and Δ_{R} / Δ is compact. If Δ is a $C N$ group with Δ_{0} trivial we will call Δ an $F N$ group.

In [3] and [6] it was shown that a group Γ is the fundamental group of a compact solvmanifold if and only if Γ satisfies an exact sequence

$$
\begin{equation*}
1 \rightarrow \Delta \rightarrow \Gamma \rightarrow Z^{*} \rightarrow 1 \tag{1}
\end{equation*}
$$

where Δ is an $F N$ group and Z^{s} denotes s copies of the integers. Fundamental groups of compact solvmanifolds will be called $F S$ groups. If Δ in (1) is a $C N$ group we will call Γ a $C S$ group. If Γ is a $C S$ group satisfying the exact sequence (1) there is a unique group Γ_{R} satisfying the exact diagram:

