ISOMETRIC EMBEDDINGS¹

BY ROBERT E. GREENE

Communicated by Avner Friedman, September 16, 1968

This note states results extending those of Nash [2] on isometric embeddings of Riemannian manifolds in euclidean spaces; proofs and further details will be given elsewhere.

Let M be a d-dimensional C^{∞} manifold. For convenience, we assume throughout that manifolds, whether compact or not, are connected. A metric on M is defined to be a quadratic form on the tangent bundle of M; note that there is no assumption of nondegeneracy. We shall assume that all metrics are C^{∞} . A Riemannian metric on M is a metric whose restriction to the tangent space T_q at a point $q \in M$ is positive definite, for all $q \in M$. A pseudo-Riemannian, or indefinite, metric is a metric whose restriction to the tangent space at each point is nondegenerate; if the nondegenerate restriction to T_q has n negative eigenvalues and p positive eigenvalues, with p+n=d, the metric is said to have signature (p, n) at q. The connectedness of M implies that the signature is independent of the choice of $q \in M$.

 R^m will denote euclidean *m*-dimensional space, with the standard flat, positive definite metric, unless otherwise indicated; R_n^p denotes euclidean (n+p)-dimensional space with flat metric of signature (p, n). Thus $R_0^m = R^m$. Let F be a C^∞ map, $F: M \to R_n^p$, and let g be a metric on M; F is said to be isometric for g if $F^*(\cdot) = g$ where " \cdot " denotes the metric for R_n^p indicated above. Note that if g is Riemannian and F is isometric for g, then F is necessarily an immersion and $n+p \ge d = \dim M$; for a general metric g, however, F need not be an immersion. We shall concern ourselves with the question: given M and a metric g on M, for what R_n^p do there exist isometric immersions, or isometric embeddings, $F: M \to R_n^p$?

1. A geometric argument for general metrics. Nash [2] guarantees the existence of isometric embeddings in some Riemannian euclidean space for any manifold with a Riemannian metric. The following argument reduces the general metric case to the Riemannian case, but requires higher dimension in the receiving euclidean space than necessary.

¹ This research was conducted while the author was supported by a National Science Foundation Graduate Fellowship.