ASYMPTOTICS AND RANDOM MATRICES WITH ROW-SUM AND COLUMN SUM-RESTRICTIONS ${ }^{1}$

BY PATRICK EUGENE O'NEIL

Communicated by Gian-Carlo Rota, July 3, 1969

1. Introduction. We desire to use the inclusion-exclusion formula for determining asymptotic approximations. This object was first achieved for a special problem by P. Erdös and I. Kaplansky [1]. The following indicates the form of the asymptotic estimate we may obtain.

Let S be an arbitrary finite set, each element of which may be said to possess "properties" from an L-set P of properties $\left\{P_{1}, P_{2}, \cdots, P_{L}\right\}$. Let

$$
N\left(P_{i_{1}}, P_{i_{2}}, \cdots, P_{i_{j}}\right)
$$

be the number of elements in the set S which possess all the properties of the set $\left\{P_{i_{1}}, P_{i_{2}}, \cdots, P_{i_{j}}\right\}$, and possibly more. To define s_{j}, let

$$
N(0) s_{j}(j!)^{-1}=\sum N\left(P_{i_{1}}, P_{i_{2}}, \cdots, P_{i_{j}}\right)
$$

where the sum runs over all j-subsets of P. Let us formally define $\left(s_{1}\right)^{j}=s_{j}$, with $s_{j}=0$ for $j>L$. Then if $E(0)$ denotes the number of elements of S with none of the properties of P, we may formally represent $E(0)$ by

$$
E(0)=N(0) e^{-s_{1}} .
$$

This representation is merely the sieve formula or the simple inclusion-exclusion formula in a formal guise. It turns out that for a great many problems of interest, this formal equation is a valid asymptotic approximation when certain restrictions are placed on the properties of P.

Some notation is required for the results which follow. Let $M^{n}(R, S)$ be the class of $n \times n(0-1)$-matrices with row-sum vector R and column-sum vector S. We denote by r_{i} or s_{i} the i th component of the n-length vector R or S respectively. It is always assumed that $\sum r_{i}$ $=\sum s_{i}$. We further restrict the vectors R and S so that the number N of integers i in $\{1,2, \cdots, n\}$ such that $r_{i}=0$ or $s_{i}=0$ is very small for large $n: N=O(\log n)$. The symbol $M^{n}(k, k)$ designates the class

[^0]
[^0]: ${ }^{1}$ This work is a major portion of the author's dissertation for a PhD, received at the Rockefeller University.

