ON A NONTRIVIAL HIGHER EXTENSION OF REPRESENTABLE ABELIAN SHEAVES¹

BY LAWRENCE S. BREEN

Communicated May 2, 1969

Let § be the category of abelian sheaves in the $f \not p \not p f$ topology over a base scheme S, as defined in Demazure and Grothendieck [3, exposé IV §6.3]. This is an abelian category with enough injectives (see Artin [1, 1.6, 1.8]). For any F in § and any integer $i \ge 0$, the functor $\operatorname{Ext}^i(F, -)$ from § to the category of abelian groups is defined in the usual manner to be the *i*th derived functor of the functor Hom(F, -). Let $S = \operatorname{Spec}(k)$ where k is a separably closed field of characteristic 2; we denote by α_2 the scheme Spec $(k[x]/(x^2))$ with the usual group law (see for example Oort [8]), by G_m the multiplicative group scheme, and identify these objects of the category C of commutative algebraic group schemes over S with the objects in § which they represent. We show that $\operatorname{Ext}^2(\alpha_2, G_m) \neq 0$.

Via the identification just mentioned, \mathbb{C} is a full subcategory of \mathbb{S} which however does not contain enough injectives. It is nonetheless possible to define a functor Ext^i within the category \mathbb{C} . For $G, G' \in \mathbb{C}$, define $\operatorname{Ext}^i(G, G')$ to be the group of equivalence classes of *i*-fold Yoneda extensions in \mathbb{C} of G by G'. This point of view, which was introduced by Serre in [9], was systematically developed by Oort in [8]. Oort shows in particular that $\operatorname{Ext}^i(H, G_m) = 0$ for $i \ge 1$, where H is any finite group scheme over an algebraically closed groundfield. Our computation thus illustrates the fact that the two definitions of Ext^i are not equivalent.

I wish to thank A. K. Bousfield and B. Mazur for their valuable help during the preparation of this work.

The technique used below in computing $\operatorname{Ext}^{i}(\alpha_{2}, G_{m})$ (where henceforth we will always mean the first definition of Ext^{i}) is that of [2]; since only a small part of the theory described there is needed in our special case, we restate in detail the facts required.

Eilenberg and MacLane have defined [4, p. 659], [5] for every abelian group G a complex of free abelian groups A(G) called the abelian complex of G:

¹ This work was supported by NSF grant GP 9152.