THE NONEXISTENCE OF BRANCH POINTS IN THE CLASSICAL SOLUTION OF PLATEAU'S PROBLEM

BY ROBERT OSSERMAN¹

Communicated by C. M. Morrey, July 17, 1969

The result to be proved is the following.

THEOREM. Let C be an arbitrary Jordan curve in \mathbb{R}^3 . Denote by Δ the closed unit disk in \mathbb{R}^2 . Then there exists a regular minimal surface S of the type of the disk spanning C. Specifically, there exists a map

$$h: \Delta \to R^{\mathfrak{s}}$$

satisfying

(i) h is continuous in Δ ;

(ii) h maps the boundary of Δ homeomorphically onto C;

(iii) each component h_k of h is a harmonic function in the interior of Δ , hence the real part of an analytic function Φ_k . The functions Φ_k satisfy

(1)
$$\sum_{k=1}^{3} (\Phi_{k}')^{2} \equiv 0$$

and

(2)
$$\sum_{k=1}^{3} |\Phi_{k}'|^{2} \neq 0 \quad everywhere.$$

(iv) the surface S defined by h has least area among all maps of Δ into \mathbb{R}^3 satisfying (i) and (ii); if the area of S is infinite, then every interior portion of S has minimum area with respect to its own boundary curve.

It is well known that condition (iii) implies that h is a conformal immersion of the interior of Δ onto a regular minimal surface. (See for example [1, §II.18].)

The above theorem was proved by Douglas and Radó (see [1, \$ VI.1-7]) *except* for condition (2). Since the functions Φ are analytic and not all constant by (ii), it follows that condition (2) can fail at most at isolated points. Such points are called *branch points*. It has remained an open question whether these branch points actually

AMS Subject Classifications. Primary 49xx, 5304; Secondary 2880.

Key Words and Phrases. Minimal surfaces, Plateau's problem, branch points, area.

 $^{^{1}}$ This research was supported by Army Research Office Contract No. DA31-124-ARO(D)170.