AN APPLICATION OF K-THEORY TO EQUIVARIANT MAPS

BY JAMES W. VICK

Communicated by P. Emery Thomas, April 18, 1969

1. Introduction. Let p be a prime and Z_p the cyclic group of order p. Denote by (S^{2n+1}, T_p) the free action of Z_p on S^{2n+1} given by

$$T_p(z_1, \cdots, z_{n+1}) = (\lambda z_1, \cdots, \lambda z_{n+1})$$
 where $\lambda = \exp(2\pi i/p)$.

Then given any pair (X, T) consisting of a finite complex X and a fixed point free transformation $T: X \rightarrow X$ of period p, one might ask for the least value of n for which there is an equivariant map of (X, T) into (S^{2n+1}, T_p) . Questions of this type have been previously investigated [3], [4], [5] with particular emphasis on the case p=2.

It is the purpose of this note to describe a method for using K-theory to approach this problem for certain actions on lens spaces.

2. **Preliminaries.** Let BZ_{p^r} be a classifying space for the group Z_{p^r} , taken to be a CW complex whose odd dimensional skeleta are the lens spaces $L(p^r, 2n+1) = S^{2n+1}/T_{p^r}$ where T_{p^r} is defined analogously to T_p . Let BS^1 be a classifying space for the circle group whose even dimensional skeleta are complex projective spaces CP(n).

Denote by K^* and K_* the Z_2 -graded cohomology and homology theories arising from the unitary spectrum (see [6] for details).

(2.1) THEOREM. There is a short exact sequence of groups

$$0 \to K^{0}(BS^{1}) \xrightarrow{\alpha} K^{0}(BS^{1}) \xrightarrow{\gamma} K^{0}(BZ_{pr}) \to 0$$

where $K^{0}(BS^{1}) \approx \mathbb{Z}[[\mu]]$ is a power series ring in one variable, γ is a ring homomorphism, and α is given by multiplication by $[(\mu+1)^{p^{r}}-1]$.

(2.2) THEOREM. There exists a short exact sequence of groups

$$0 \to \tilde{K}_0(BS^1) \xrightarrow{\beta} K_0(BS^1) \to K_1(BZ_{pr}) \to 0$$

where $K_0(BS^1)$ is the free abelian group generated by $\{g_i\}_{i=0}^{\infty}$ and

$$\beta(g_k) = g_{k-p^r} + {p^r \choose 1} g_{k-p^r+1} + \cdots + {p^r \choose p^r - 1} g_{k-1},$$

where $g_k = 0$ whenever k < 0.