MANIFOLDS OF THE HOMOTOPY TYPE OF (NON-LIE) GROUPS

BY JAMES D. STASHEFF

Communicated by Edgar Brown, February 17, 1969

Hilbert's Fifth Problem implies that a topological group which is topologically a finite dimensional manifold is a Lie group. Until quite recently, the only topological groups of the homotopy type of compact manifolds known were Lie groups. In 1963 Slifker exhibited a topological group of the homotopy type of S^3 yet not multiplicatively equivalent to SU(1). In 1968, Hilton and Roitberg announced the discovery of a 10-dimensional manifold M_7^{10} which admits a multiplication yet is not of the homotopy type of a Lie group. In fact, they showed $M_7^{10} \times S^3 = \text{Sp}(2) \times S^3$. They left open the question: Does M_7^{10} admit a homotopy associative multiplication, a necessary condition for M^{10} to be of the homotopy type of a topological group? We answer the question affirmatively; thus a homotopy version of Hilbert's Fifth Problem is false.

THEOREM 1. There is a topological group G of the homotopy type of a compact manifold M^{10} (the 3-sphere bundle over S⁷ described by Hilton and Roitberg) which is not of the homotopy type of any Lie group.

More precisely we show the following

THEOREM 2. Let $S^3 \rightarrow M_n^{10} \rightarrow S^7$ be the principal S^3 -bundle classified by $n\omega \in \pi_6$ (S^3), $n \in \mathbb{Z}_{12}$, ω chosen as a generator such that the corresponding M_1^{10} is Sp (2).

 M_n^{10} is of the homotopy type of a Lie group if and only if $n \equiv \pm 1$ (12). M_n^{10} is of the homotopy type of a topological group if $n \equiv \pm 1, \pm 5$ (12). M_n^{10} admits a multiplication if $n \neq 2$ (4).

The first part results from the classification of such bundles up to homotopy type and the classification of Lie groups. The case $n \equiv -1$ is realized by $\overline{\text{Sp}}$ (2), the opposite symplectic group, which has the same underlying space as Sp (2) but the opposite order of multiplication.

The remainder of the theorem is proved using a new technique of Zabrodsky's called "mixing homotopy types" [2].

Let P be the set of primes and $P = P_1 \cup P_2$, a decomposition into disjoint subsets. Let $\mathbb{C}P_1$ denote the class of abelian groups of orders not divisible by primes in P_2 and let $\mathbb{C}P_2$ denote the class of abelian groups not divisible by primes in P_1 .

Let X, X_0 be simply connected CW-complexes.