ON THE DECOMPOSITION OF MODULES

BY ANDREAS DRESS

Communicated by Hyman Bass, March 3, 1969

Let R be a commutative ring with $1 \in R$, A and R-algebra—not necessarily commutative—and let M, N be two A-left-modules. We write $N-\operatorname{rk}(M) \ge s$, if $M \cong sN \oplus M'$ for some A-left-module M' with $s \cdot N$ short for $N \oplus N \oplus \cdots \oplus N$, s-times.

Then one can prove the following generalization of a theorem of Serre (cf. [1] or [4]).

THEOREM 1. Assumptions.

- (i) N is finitely presented as A-left-module, $\operatorname{End}_A(N)$ finitely generated as R-module and M a direct summand in a direct sum of finitely presented A-modules;
 - (ii) the maximal ideal spectrum of R is noetherian of dimension d;
- (iii) for any maximal ideal m in R we have $N_{\mathfrak{m}} \operatorname{rk}(M_{\mathfrak{m}}) \geq d + s$ with $N_{\mathfrak{m}}$, resp. $M_{\mathfrak{m}}$ the $A_{\mathfrak{m}} = R_{\mathfrak{m}} \otimes_{R} A$ -module $R_{\mathfrak{m}} \otimes_{R} N$, resp. $R_{\mathfrak{m}} \otimes M$.

Then $N-\operatorname{rk}(M) \geq s$.

Moreover, if R is noetherian, $\hat{R}_{\mathfrak{m}}$ the \mathfrak{m} -adic completion of R for some maximal ideal \mathfrak{m} and $\hat{N}_{\mathfrak{m}}$, resp. $\hat{M}_{\mathfrak{m}}$ the $\hat{A}_{\mathfrak{m}} = \hat{R}_{\mathfrak{m}} \otimes_{R} A$ -module $\hat{R}_{\mathfrak{m}} \otimes_{R} N$, resp. $\hat{R}_{\mathfrak{m}} \otimes_{R} M$, then

$$N_{\mathfrak{m}} - \operatorname{rk}(M_{\mathfrak{m}}) \ge d + s \Leftrightarrow \hat{N}_{\mathfrak{m}} - \operatorname{rk}(\hat{M}_{\mathfrak{m}}) \ge d + s.$$

One can also prove the following generalization of the Cancellation Theorem of Bass (cf. [1]).

THEOREM 2. Assumptions.

- (i) and (ii) as in Theorem 1;
- (iii) M contains a direct summand P with $N-\text{rk}_{\mathfrak{m}}(P)>d$ for all maximal ideals \mathfrak{m} in R, which is a direct summand in some $s \cdot N$:
- (iv) Q is an A-left-module, which is also a direct summand in some $s \cdot N$, and M' is some A-left-module with $Q \oplus M \cong Q \oplus M'$. Then $M \cong M'$.

The proof follows closely those of Serre and Bass [1], [4], once the following observations have been made:

(1) If N is any A-left-module and if $B = \operatorname{End}_A(N)$ —acting from the right on N—then the contravariant functor $\operatorname{Hom}_A(\cdot, N)$ from A-left-modules to B-right-modules defines a contravariant equivalence between the category [N] of those A-left-modules P, which are a direct summand in some $s \cdot N$ (and all possible A-homomorphisms as morph-