APPLICATIONS OF RADON-NIKODYM THEOREMS TO MARTINGALES OF VECTOR VALUED FUNCTIONS

BY J. J. UHL, JR.

Communicated by David Blackwell, February 24, 1969

The purpose of this note is to announce some new martingale convergence theorems derived as consequences of the Radon-Nikodým theorems, theorems for vector measures of Métivier [7] and Rieffel [8]. The results announced here contain theorems of Scalora [9], Chatterji [1] and [2], A. and C. Ionescu-Tulcea [5] and Métivier [7]. Throughout this note, unless explicitly mentioned otherwise, (Ω, Σ, μ) is a fixed finite measure space, \mathfrak{X} is a Banach space, $L^p(\mu, \mathfrak{X})$, $(1 \leq p < \infty)$ is the space of all strongly measurable \mathfrak{X} -valued (equivalence classes of) functions f on Ω satisfying $||f||_p = (\int_{\Omega} ||f||^p d\mu)^{1/p}$ $< \infty$. If T is a directed set, $\{B_{\tau_1}, \tau \in T\}$ is an increasing net of sub- σ -fields (i.e. $\tau_1 \leq \tau_2$ implies $B_{\tau_1} \subset B_{\tau_2}$), then $\{f_{\tau_1}, B_{\tau_1}, \tau \in T\}$ is a martingale in $L^p(\mu, \mathfrak{X})$ $(1 \leq p < \infty)$ if $f_{\tau_1} \in L^p(\mu, \mathfrak{X})$, f_{τ} is measurable relative to B_{τ_1} and $\int_{\mathbb{R}} f_{\tau_2} d\mu = \int_{\mathbb{R}} f_{\tau_1} d\mu$ if $\tau_2 \geq \tau_1$ and $E \in B_{\tau_1}$.

1. A characterization of mean convergent martingales in $L^{p}(\mu, \mathfrak{X})$. This section is devoted to characterizing mean convergent martingales in $L^{p}(\mu, \mathfrak{X})$. Basic to this section is the following

DEFINITION. A martingale $\{f_{\tau}, B_{\tau}, \tau \in T\}$ in $L^{p}(\mu, \mathfrak{X})$ is said to have property WCD (CD) if for each $\epsilon > 0$ there exists a weakly (norm) compact convex subset $K_{\epsilon} \subset \mathfrak{X}$ such that for each $\delta > 0$ there is an index $\tau_{0} \in T$ and $E_{0} \in B_{\tau_{0}}$ with $\mu(\Omega - E_{0}) < \epsilon$ such that for $\tau \geq \tau_{0}$

$$\int_{E} f_{\tau} d\mu \in \mu(E) K_{\epsilon} + \delta U$$

 $E \subset E_0, E \in B_\tau$. Where $U = \{x \in \mathfrak{X} : ||x|| \leq 1\}$.

The following theorem is believed to be the first theorem which characterizes mean convergent martingales in $L^{p}(\mu, \mathfrak{X})$.

THEOREM 1. Let $\{f_{\tau}, B_{\tau}, \tau \in T\}$ be a martingale in $L^{p}(\mu, \mathfrak{X})$ $(1 \leq p < \infty)$. The net $\{f_{\tau}, \tau \in T\}$ is convergent in the L^{p} norm if and only if

(i) $\sup_{\tau \in T} ||f_{\tau}||_{p} \leq M < \infty$ for some M;

(ii) $\{f_{\tau}, \tau \in T\}$ is terminally uniformly integrable; i.e. given an $\epsilon > 0$, there is an index $\tau_0 \in T$ and $\delta > 0$ such that $\tau \ge \tau_0$ and $\mu(E) < \delta$ imply

$$\int_{E} \|f_{\tau}\| d\mu < \epsilon,$$