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The purpose of this note is to announce some new martingale 
convergence theorems derived as consequences of the Radon-
Nikod^m theorems, theorems for vector measures of Métivier [7] 
and Rieffel [8]. The results announced here contain theorems of 
Scalora [9], Chatterji [ l ] and [2], A. and C. Ionescu-Tulcea [5] 
and Métivier [7]. Throughout this note, unless explicitly mentioned 
otherwise, (Î2, S, /*) is a fixed finite measure space, 36 is a Banach space, 
Lp(jJ>* Ï ) , (1 ûp< °o) is the space of all strongly measurable 36-valued 
(equivalence classes of) functions ƒ on Q satisfying ||/||p = (/o | | / | | P ^M) 1 / P 

< oo. If T is a directed set, {BT, TÇÎT) is an increasing net of sub-
(7-fields (i.e. T i^ r 2 implies BTlC.BTi), then {fT1 BT1 TE:T\ is a martin
gale in LP(JJL, 36) (1 ^p< co) if/rE£p(M» #)>U is measurable relative to 
JBT, and JE fr2dii = JE fTldn if T^TX and EEBTV 

1. A characterization of mean convergent martingales in Lp(n, 36). 
This section is devoted to characterizing mean convergent martin
gales in Lp(jx, 36). Basic to this section is the following 

DEFINITION. A martingale {/r, BTy TET} in LpQx, 36) is said to 
have property WCD (CD) if for each €>0 there exists a weakly 
(norm) compact convex subset KtCJ£ such that for each S > 0 there 
is an index TO£JT and £0G-BTo with /x(Q—E0) <€ such that for T ^ T O 

f fTdneriE)K< + àU 
J E 

ECEo, EEBT. Where *7= {*G36: ||*|| ^ l } . 
The following theorem is believed to be the first theorem which 

characterizes mean convergent martingales in Lp(jx, 36). 

THEOREM 1. Let {/T, BT> r G T} be a martingale in Lp(jx, 36) (1 ̂  p <*> ). 
The net {frt T^T} is convergent in the Lp norm if and only if 

(i) sup T € r | | / r | | p gAf<oo for some M; 
(ii) {ƒ,., TÇET} is terminally uniformly integrable; i.e. given an 

€>0, there is an index T0ÇZT and 8 > 0 such that T^T0 and p(E)<ô 
imply 

f IWI*»<«, 
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