DIFFERENTIABILITY THEOREMS FOR WEAK SOLUTIONS OF NONLINEAR ELLIPTIC DIFFERENTIAL EQUATIONS¹

BY CHARLES B. MORREY, JR.

I shall begin by speaking about the extremals of an integral of the form

(1)
$$I(z, G) = \int_{G} f[x, z(x), \nabla z(x)] dx$$

where G is a domain in R^{*} ,

(2)
$$x = (x^1, \cdots, x^p), \quad z = (z^1, \cdots, z^N), \quad dx = dx^1 \cdots dx^p,$$

z(x) is a vector function, ∇z denotes its gradient which is the set of functions $\{z_{,\alpha}^{t}\}$ where $z_{,\alpha}^{t}$ denotes $\partial z^{i}/\partial x^{\alpha}$, and f(x, z, p) $(p = \{p_{\alpha}^{t}\})$ is generally assumed continuous in all its arguments. The integrals $\int_{a}^{b} (1 + (dz/dx)^{2})^{1/2} dx$ and $\iint_{G} [(\partial z/\partial x^{1})^{2} + (\partial z/\partial x^{2})^{2}] dx^{1} dx^{2}$ are familiar examples of integrals of the form (1) in which N = 1 in both cases, $\nu = 1$ in the first case, and $\nu = 2$ in the second case and the corresponding functions f are defined, respectively, by

$$f(x, z, p) = (1 + p^2)^{1/2}, \quad f(x, z, p) = (p_1)^2 + (p_2)^2$$

where we have omitted the superscripts on z and p since N=1. The second integral is a special case of the *Dirichlet integral* which is defined in general by

(3)
$$D(z, G) = \int_{G} |\nabla z|^2 dx, \quad f(x, z, p) = |p|^2 = \sum_{i,\alpha} (p_{\alpha}^i)^2.$$

Another example is the area integral

(4)

$$A(z, G) = \int \int_{G} \left(\left[\frac{\partial(z^{2}, z^{3})}{\partial(x^{1}, x^{2})} \right]^{2} + \left[\frac{\partial(z^{3}, z^{1})}{\partial(x^{1}, x^{2})} \right]^{2} + \left[\frac{\partial(z^{1}, z^{2})}{\partial(x^{1}, x^{2})} \right]^{2} \right)^{1/2} dx^{1} dx^{2}$$

which gives the area of the surface

(5) $z^i = z^i(x^1, x^2), \quad (x^1, x^2) \in G, \quad i = 1, 2, 3.$

¹ Presidential address delivered before the Annual Meeting of the Society in New Orleans on January 24, 1969; received by the editors February 24, 1969.