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INTRODUCTION. We discuss in this paper various topics involving 
continuous vector fields on smooth differentiable manifolds. In each 
case the underlying idea is the same: we aim to study geometric 
properties of manifolds by means of algebraic invariants. The proto­
type for this is the theorem of H. Hopf [27] on vector fields. 

THEOREM OF H O P F . A compact manifold M has a vector field without 
zeros if and only if the Euler characteristic of M vanishes. 

Recall tha t the Euler characteristic of M, xM, is defined by 

xJf = Z(-1)'** 
*-o 

where n = dim M and 6» = ith Betti number of M ( = dim of Hi(M; Q)). 
Thus the geometric property of M having a nonzero vector field is 
expressed in terms of the algebraic invariant xM. We will discuss 
extensions of this idea to vector ^-fields, fields of ^-planes, and folia­
tions of manifolds. 

All manifolds considered will be connected, smooth and without 
boundary; all maps will be continuous. For background information 
on manifolds and vector fields see [30], [34] and [67]. 

1. The index of a tangent ê-field. By a tangent k-field on a mani­
fold M, we will mean k tangent vector fields Xi, • • • , Xk, which are 
linearly independent at each point of M. If a ê-field is defined at all 
but a finite number of points, we will say that it is a è-field with finite 
singularities. In this section we discuss an algebraic invariant, the 
index, which measures whether or not one can alter a fe-field so as to 
remove its singularities. 

To define the index we assume that the manifold M has been given 
a simplicial triangulation so that each point of singularity of the 
è-field lies in the interior of an w-simplex, where m = dim M. Let p 
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