CATEGORIES OF V-SETS

BY J. A. GOGUEN ${ }^{1}$
Communicated by Saunders Mac Lane, December 9, 1968

Let V be a partially ordered set. Then a V-set is a function $A: X$ $\rightarrow V$ from a set X to $V . V$ is the set of values for A, and X is the carrier of A. If $B: Y \rightarrow V$ is another V-set, a morphism $f: A \rightarrow B$ is a function $\bar{f}: X \rightarrow Y$ such that $A(x) \leqq B(\bar{f}(x))$ for each $x \in X$. The category of all V-sets is denoted $\delta(V)$. The carrier functor $K: \delta(V) \rightarrow \delta$ assigns X to $A: X \rightarrow V$ and $\bar{f}: X \rightarrow Y$ to $f: A \rightarrow B$, where δ is the category of sets. See [2].

If V has one point, $s(V)=s$. If $V=\{0,1\}$, where $0<1, s(V)$ is the category of pairs (X, A) of sets, where $A \subseteq X$. If V is the closed unit interval, $s(V)$ is the category of "fuzzy sets", as used by Zadeh and others [1], [5] for problems of pattern recognition and systems theory. When V is a Boolean algebra, V-sets are Boolean-valued sets, as used by Scott and Solovay for independence results in set theory (however, their notion of morphism is different).

If V is complete, $s(V)$ is a pleasant category satisfying all Lawvere's axioms [3] for S except choice, modulo some substitutions of the V-set with carrier 1 and value 0 for the terminal object. In particular,

Theorem 1. If V is complete, $S(V)$ is complete and cocomplete, has an exponential (i.e., a coadjoint to product) and a "Dedekind-Pierce object" (i.e., an object which looks like the set of integers; see [3]).

Let Poc denote the category of partially ordered classes, and let $\mathfrak{\&}$ be a subcategory of Poc. Then a category \mathcal{C} is $\mathfrak{\&}$-ordered if the power function $\mathcal{P}:|\mathbb{C}| \rightarrow$ Poc factors through \mathcal{L}, where $\mathcal{P}(A)$ is the class of all equivalence classes of monics with codomain $A(f \equiv g$ if \exists an isomorphism h such that $f h=g$). Denote the image of $A \xrightarrow{f} B$ by $f(A)$, and the image of the composite $A^{\prime} \xrightarrow{i} A \xrightarrow{f} B$, where i is monic, by $f\left(A^{\prime}\right)$. Then \mathcal{C} has associative images if it has images such that $f(g(A))$ $=(f g)(A)$, whenever $A \xrightarrow{g} B \xrightarrow{f} C . \mathcal{P}$ can be construed as a functor when \mathfrak{C} has associative images. Let CL denote the category of complete lattices, and call a category C_{1} if a coproduct of monics is always monic.

[^0]
[^0]: ${ }^{1}$ Research supported by Office of Naval Research under contracts Nos. 3656 (08) and 222 (85), at the University of California at Berkeley.

