CATEGORIES OF V-SETS

BY J. A. GOGUEN¹

Communicated by Saunders Mac Lane, December 9, 1968

Let V be a partially ordered set. Then a V-set is a function $A: X \to V$ from a set X to V. V is the set of values for A, and X is the carrier of A. If $B: Y \to V$ is another V-set, a morphism $f: A \to B$ is a function $\overline{f}: X \to Y$ such that $A(x) \leq B(\overline{f}(x))$ for each $x \in X$. The category of all V-sets is denoted S(V). The carrier functor $K: S(V) \to S$ assigns X to $A: X \to V$ and $\overline{f}: X \to Y$ to $f: A \to B$, where S is the category of sets. See [2].

If V has one point, S(V) = S. If $V = \{0, 1\}$, where 0 < 1, S(V) is the category of pairs (X, A) of sets, where $A \subseteq X$. If V is the closed unit interval, S(V) is the category of "fuzzy sets", as used by Zadeh and others [1], [5] for problems of pattern recognition and systems theory. When V is a Boolean algebra, V-sets are Boolean-valued sets, as used by Scott and Solovay for independence results in set theory (however, their notion of morphism is different).

If V is complete, S(V) is a pleasant category satisfying all Lawvere's axioms [3] for S except choice, modulo some substitutions of the V-set with carrier 1 and value 0 for the terminal object. In particular,

THEOREM 1. If V is complete, S(V) is complete and cocomplete, has an exponential (i.e., a coadjoint to product) and a "Dedekind-Pierce object" (i.e., an object which looks like the set of integers; see [3]).

Let Poc denote the category of partially ordered classes, and let \mathfrak{L} be a subcategory of Poc. Then a category \mathfrak{C} is \mathfrak{L} -ordered if the power function $\mathfrak{O}: |\mathfrak{C}| \rightarrow \operatorname{Poc}$ factors through \mathfrak{L} , where $\mathfrak{O}(A)$ is the class of all equivalence classes of monics with codomain $A(f \equiv g \text{ if } \exists \text{ an isomorphism } h \text{ such that } fh = g)$. Denote the image of $A \xrightarrow{f} B$ by f(A), and the image of the composite $A' \xrightarrow{i} A \xrightarrow{f} B$, where i is monic, by f(A'). Then \mathfrak{C} has associative images if it has images such that f(g(A)) = (fg)(A), whenever $A \xrightarrow{g} B \xrightarrow{f} C$. \mathfrak{O} can be construed as a functor when \mathfrak{C} has associative images. Let CL denote the category of complete lattices, and call a category C_1 if a coproduct of monics is always monic.

¹ Research supported by Office of Naval Research under contracts Nos. 3656(08) and 222(85), at the University of California at Berkeley.