SCHAUDER BASES IN SPACES OF DIFFERENTIABLE FUNCTIONS

BY STEVEN SCHONEFELD

Communicated by R. C. Buck, December 9, 1968

Banach [1, p. 238] states that Schauder bases are known for the spaces $C^k(I)$ but it is not known if $C^1(I \times I)$ has a Schauder basis. In this note we construct a Schauder basis for $C^1(I \times I)$.

1. Definitions and notation. We say that $\{x_n; \alpha_n\}$ (or simply $\{x_n\}$) is a Schauder basis for a Banach space X if for each $x \in X$ there exist unique scalars $a_i = \alpha_i(x)$ such that $x = \sum_{i=1}^{\infty} a_i x_i$ (i.e. the sequence of partial sums $\{\sum_{i=1}^{n} a_i x_i\}$ converges to x in norm).

It is well known [4] that each α_n is a continuous linear functional on X. Also, a total set $\{x_n\}$ is a Schauder basis for X if and only if there exists a constant M such that

(1)
$$\left\| \sum_{i=1}^{p} a_i x_i \right\| \leq M \left\| \sum_{i=1}^{p+q} a_i x_i \right\|$$

for any sequence $\{a_i\}$ of scalars and any natural numbers p, q. In the sequel we simply say "basis" for "Schauder basis".

We will denote by I the closed interval [0, 1], by C(I) the Banach space of real-valued continuous functions f defined on I with norm $||f||_{\infty} = \sup_{x \in I} |f(x)|$. $C^k(I)$ is the Banach space of real-valued f having k continuous derivatives with norm $||f||_k = ||f||_{\infty} + ||f'||_{\infty} + \cdots + ||f^{(k)}||_{\infty}$. Finally, $C^1(I \times I)$ is the Banach space of real-valued functions h = h(x, y) defined on $I \times I$ with continuous first partial derivatives. The norm for $C^1(I \times I)$ is given by

$$||h|| = \sup_{(x,y)\in I\times I} |h(x,y)| + \sup_{(x,y)\in I\times I} \left|\frac{\partial}{\partial x}h(x,y)\right| + \sup_{(x,y)\in I\times I} \left|\frac{\partial}{\partial y}h(x,y)\right|.$$

2. Construction of bases for $C^k(I)$. Let $\{\phi_n; \mu_n\}$ be any basis for C(I) and let

(2)
$$f_1(x) = 1, \qquad \alpha_1(f) = f(0),$$

$$f_n(x) = \int_0^x \phi_{n-1}(t)dt, \qquad \alpha_n(f) = \mu_{n-1}(f'),$$

¹ total = finite linear combinations are dense in X.