SURGERY IN $M \times N$ WITH $\pi_1 M \neq 1$

BY ROBERT WILLIAMSON1

Communicated by P. Emery Thomas, November 11, 1968

1. We announce here the answer, in part, to a question raised by Wall in §9 of [3], his basic paper on nonsimply connected surgery. To explain this, let X be a finite Poincaré complex of formal dimension m, and let ν be a vector bundle over X of the fiber homotopy type of the "Spivak normal fibration." In §3 of [3] Wall defines a cobordism group $\Omega_m(X, \nu)$ based on degree 1 maps $\phi: M \to X$ and framings of $T(M) \oplus \phi^*\nu$. In §5 (for m even) and §6 (for m odd) Wall defines a covariant functor L_m from finitely presented groups to abelian groups and a map $\theta: \Omega_m(X, \nu) \to L_m(\pi_1 X)$ which describes the obstruction to surgering $\phi: \theta(\alpha) = 0$ if and only if α contains a simple homotopy equivalence $\phi: M \to X$. L_m and L_{m+4} are the same by definition. To give a geometric expression to this periodicity, in §9 Wall defines a pairing

$$L_m(\pi) \otimes \Omega_n \to L_{n+m}(\pi)$$

by associating, to N^n and the map $\phi: M \rightarrow X$, the product $\phi \times \mathrm{id}$: $M \times N^n \rightarrow X \times N^n$. This makes $L_*(\pi)$ into an Ω^* -module and Wall shows that the action of $[CP_2]$ is the periodicity identity $L_m = L_{m+4}$; Wall then conjectures that the action of [N] depends only on the index I(N). Here we show that this is true, at least for m odd and n even.

THEOREM 1. For m odd and n = 2r, the pairing $L_m(\pi) \otimes \Omega_n \to L_{n+m}(\pi)$ sends $\alpha \otimes [N] \to I(N)\alpha$ for r even, $\alpha \otimes [N] \to 0$ for r odd.

The case m=2k appears to be easier to handle, since the obstruction is the intersection form, which is just the \otimes -product of the form on M and the form on N, and is homologically defined. The self intersection form does introduce a complication, at least if k is odd. In any case we concentrate here on m=2k+1.

2. We freely use here terms and notation introduced by Wall in [3, §5, §6 mostly]. Throughout π will be a fixed finitely presented group and $\Lambda = \mathbb{Z}[\pi]$. Let (K, λ, μ) be a standard kernel, as in Wall's §5. So K is a free Λ -module (of finite dimension) and $K = S_1 \oplus S_2$ where S_1 has a specified basis e_1, \dots, e_r and S_2 has basis f_1, \dots, f_r . λ is a $(-1)^k$ -conjugate symmetric quadratic form on K (briefly,

¹ The author was partially supported by NSF grant NSF-GP-7993.