SURGERY IN $M \times N$ WITH $\pi_{1} M \neq 1$

BY ROBERT WILLIAMSON ${ }^{1}$

Communicated by P. Emery Thomas, November 11, 1968

1. We announce here the answer, in part, to a question raised by Wall in §9 of [3], his basic paper on nonsimply connected surgery. To explain this, let X be a finite Poincaré complex of formal dimension m, and let ν be a vector bundle over X of the fiber homotopy type of the "Spivak normal fibration." In §3 of [3] Wall defines a cobordism group $\Omega_{m}(X, \nu)$ based on degree 1 maps $\phi: M \rightarrow X$ and framings of $T(M) \oplus \phi^{*} \nu$. In §5 (for m even) and §6 (for m odd) Wall defines a covariant functor L_{m} from finitely presented groups to abelian groups and a map $\theta: \Omega_{m}(X, \nu) \rightarrow L_{m}\left(\pi_{1} X\right)$ which describes the obstruction to surgering $\phi: \theta(\alpha)=0$ if and only if α contains a simple homotopy equivalence $\phi: M \rightarrow X . L_{m}$ and L_{m+4} are the same by definition. To give a geometric expression to this periodicity, in §9 Wall defines a pairing

$$
L_{m}(\pi) \otimes \Omega_{n} \rightarrow L_{n+m}(\pi)
$$

by associating, to N^{n} and the map $\phi: M \rightarrow X$, the product $\phi \times$ id: $M \times N^{n} \rightarrow X \times N^{n}$. This makes $L_{*}(\pi)$ into an Ω^{*}-module and Wall shows that the action of $\left[C P_{2}\right]$ is the periodicity identity $L_{m}=L_{m+4}$; Wall then conjectures that the action of [N] depends only on the index $I(N)$. Here we show that this is true, at least for m odd and n even.

Theorem 1. For m odd and $n=2 r$, the pairing $L_{m}(\pi) \otimes \Omega_{n} \rightarrow L_{n+m}(\pi)$ sends $\alpha \otimes[N] \rightarrow I(N) \alpha$ for r even, $\alpha \otimes[N] \rightarrow 0$ for r odd.

The case $m=2 k$ appears to be easier to handle, since the obstruction is the intersection form, which is just the \otimes-product of the form on M and the form on N, and is homologically defined. The self intersection form does introduce a complication, at least if k is odd. In any case we concentrate here on $m=2 k+1$.
2. We freely use here terms and notation introduced by Wall in [$3, \S 5, \S 6$ mostly]. Throughout π will be a fixed finitely presented group and $\Lambda=\boldsymbol{Z}[\pi]$. Let (K, λ, μ) be a standard kernel, as in Wall's §5. So K is a free Λ-module (of finite dimension) and $K=S_{1} \oplus S_{2}$ where S_{1} has a specified basis e_{1}, \cdots, e_{ν} and S_{2} has basis f_{1}, \cdots, f_{ν}. λ is a (-1) ${ }^{k}$-conjugate symmetric quadratic form on K (briefly,

[^0]
[^0]: ${ }^{1}$ The author was partially supported by NSF grant NSF-GP-7993.

