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1. Introduction. Functions of bounded variation on [a, b] are those 
functions for which 

(1) Vlif) « Sup V(f9 P) = Sup £ | A/y | 
p P y-i 

is finite. An important theorem about the set BV[a, b] of all such 
functions says that this set may be characterized as the set of all 
functions representable as the difference of two nondecreasing func
tions. Stated with less precision but more suggestion for our purposes, 
BV\a, b] is the set of all functions representable as the difference of 
two functions with nonnegative first derivatives. I t is then natural 
to consider the set of all functions representable as the difference of 
two functions with nonnegative second derivatives (convex functions, 
roughly speaking). 

We begin our study with an expression that plays the role of 
(1). For a partition P= {a = Xi<X2< • • • <xn = b}t let Q/y 

- [ f ( * i ) - / ( * w ) / ( * y - * y - i ) ] . 
DEFINITION 1. F o r / : [a, b]—>R, let 

(2) K\U) - SupK(f,P) - Sup g | Dfm - DfA . 
p P i - i 
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