RINGS WITH TRANSFINITE LEFT DIVISION ALGORITHM

BY ARUN VINAYAK JATEGAONKAR

Communicated by I. N. Herstein, September 30, 1968

The aim of this note is to describe the structure of a class of noncommutative rings which possess a variant of the Euclidean algorithm and indicate some properties of such rings.

All rings are associative and possess unity; subrings and homomorphisms are unitary. A *domain* is a (not necessarily commutative) ring without nonzero zero-divisors.

Let R be a ring and ϕ be an ordinal-valued function defined on $R \sim (0)$. Put $\phi(0) = -\infty$ and let $(-\infty) + (-\infty) = \alpha + (-\infty)$ = $(-\infty) + \alpha = -\infty$ and $-\infty < \alpha$ for every ordinal α in the range of ϕ . ϕ is called a *transfinite left division algorithm* on R if, for all $a, b \in R$, the following conditions hold:

(1) $\phi(a-b) \leq \max \{\phi(a), \phi(b)\},\$

(2) $\phi(ab) = \phi(b) + \phi(a),$

(3) if $b \neq 0$, then there exist $q, r \in R$ such that $a = qb + r, \phi(r) < \phi(b)$.

Clearly, every ring with a transfinite left division algorithm is a left principal ideal domain.

We need some terminology and notations. Let ρ be a mono-endomorphism of a domain *D*. A mapping $\delta: D \rightarrow D$ is called a ρ -derivation on *D* if $\delta(a+b) = \delta(a) + \delta(b)$ and $\delta(ab) = \rho(a)\delta(b) + \delta(a)b$ hold for all *a*, $b \in D$.

Let *D* be a subdomain of a domain *R*. Let *x* be an element of *R* such that every nonzero element $r \in R$ can be uniquely expressed as $\sum_{i=0}^{i} d_i x^{n_i}$ where $d_i \in D \sim (0)$ and n_i are integers with $0 \le n_0 < \cdots < n_s$. Further, suppose that there exists a mono-endomorphism ρ of *D* and a ρ -derivation δ on *D* such that $xd = \rho(d)x + \delta(d)$ for all $d \in D$. This situation is expressed symbolically as $R = D[x, \rho, \delta]$.

Let R be a domain, α a nonzero ordinal and $\{R_{\beta}: \beta < \alpha\}$ a set of subdomains of R such that

(1) $R = \bigcup_{\beta < \alpha} R_{\beta}$,

(2) if $0 < \beta < \alpha$ then $R_{\beta} = (\bigcup_{\gamma < \beta} R_{\gamma}) [x_{\beta}, \rho_{\beta}, \delta_{\beta}]$. We express this situation symbolically as $R = R_0 [x_{\beta}, \rho_{\beta}, \delta_{\beta}: 0 < \beta < \alpha]$. Thus, $\bigcup_{\gamma < \beta} R_{\gamma} = R_0 [x_{\gamma}, \rho_{\gamma}, \delta_{\gamma}: 0 < \gamma < \beta]$. If all δ_{β} are zero derivations, we simplify the notation and put $R = R_0 [x_{\beta}, \rho_{\beta}: 0 < \beta < \alpha]$.

THEOREM 1 (CF. [2], [4]). A ring R has a transfinite left division algorithm if and only if $R = K[x_{\beta}, \rho_{\beta}, \delta_{\beta}: 0 < \beta < \alpha]$, where K is a skew