# RINGS WITH TRANSFINITE LEFT DIVISION ALGORITHM 

BY ARUN VINAYAK JATEGAONKAR

Communicated by I. N. Herstein, September 30, 1968
The aim of this note is to describe the structure of a class of noncommutative rings which possess a variant of the Euclidean algorithm and indicate some properties of such rings.

All rings are associative and possess unity; subrings and homomorphisms are unitary. A domain is a (not necessarily commutative) ring without nonzero zero-divisors.

Let $R$ be a ring and $\phi$ be an ordinal-valued function defined on $R \sim(0)$. Put $\phi(0)=-\infty$ and let $(-\infty)+(-\infty)=\alpha+(-\infty)$ $=(-\infty)+\alpha=-\infty$ and $-\infty<\alpha$ for every ordinal $\alpha$ in the range of $\phi . \phi$ is called a transfinite left division algorithm on $R$ if, for all $a, b \in R$, the following conditions hold:
(1) $\phi(a-b) \leqq \max \{\phi(a), \phi(b)\}$,
(2) $\phi(a b)=\phi(b)+\phi(a)$,
(3) if $b \neq 0$, then there exist $q, r \in R$ such that $a=q b+r, \phi(r)<\phi(b)$.

Clearly, every ring with a transfinite left division algorithm is a left principal ideal domain.

We need some terminology and notations. Let $\rho$ be a mono-endomorphism of a domain $D$. A mapping $\delta: D \rightarrow D$ is called a $\rho$-derivation on $D$ if $\delta(a+b)=\delta(a)+\delta(b)$ and $\delta(a b)=\rho(a) \delta(b)+\delta(a) b$ hold for all $a, b \in D$.

Let $D$ be a subdomain of a domain $R$. Let $x$ be an element of $R$ such that every nonzero element $r \in R$ can be uniquely expressed as $\sum_{i=0}^{i} d_{i} x^{n_{i}}$ where $d_{i} \in D \sim(0)$ and $n_{i}$ are integers with $0 \leqq n_{0}<\cdots$ $<n_{s}$. Further, suppose that there exists a mono-endomorphism $\rho$ of $D$ and a $\rho$-derivation $\delta$ on $D$ such that $x d=\rho(d) x+\delta(d)$ for all $d \in D$. This situation is expressed symbolically as $R=D[x, \rho, \delta]$.

Let $R$ be a domain, $\alpha$ a nonzero ordinal and $\left\{R_{\beta}: \beta<\alpha\right\}$ a set of subdomains of $R$ such that
(1) $R=\bigcup_{\beta<\alpha} R_{\beta}$,
(2) if $0<\beta<\alpha$ then $R_{\beta}=\left(U_{\gamma<\beta} R_{\gamma}\right)\left[x_{\beta}, \rho_{\beta}, \delta_{\beta}\right]$. We express this situation symbolically as $R=R_{0}\left[x_{\beta}, \rho_{\beta}, \delta_{\beta}: 0<\beta<\alpha\right]$. Thus, $U_{\gamma<\beta} R_{\gamma}$ $=R_{0}\left[x_{\gamma}, \rho_{\gamma}, \delta_{\gamma}: 0<\gamma<\beta\right]$. If all $\delta_{\beta}$ are zero derivations, we simplify the notation and put $R=R_{0}\left[x_{\beta}, \rho_{\beta}: 0<\beta<\alpha\right]$.

Theorem 1 (CF. [2], [4]). A ring $R$ has a transfinite left division algorithm if and only if $R=K\left[x_{\beta}, \rho_{\beta}, \delta_{\beta}: 0<\beta<\alpha\right]$, where $K$ is a skew

