AN ASYMPTOTIC REPRESENTATION OF THE SAMPLE DISTRIBUTION FUNCTION

BY DAVID R. BRILLINGER

Communicated by David Blackwell, January 10, 1969

1. Let X_1, \dots, X_n be independent observations from the uniform distribution on [0, 1]. Let $F_n(x)$ = the proportion of the $X_j \le x$. We will prove

THEOREM. There is a random function $\{G_n(x); 0 \le x \le 1\}$, with the same distribution as $\{F_n(x); 0 \le x \le 1\}$ for each n, and there is a Brownian motion W, such that for the Brownian $B(x) = n^{-1/2}W(nx)$

$$\sup_{0 \le x \le 1} \left| n^{1/2} [G_n(x) - x] - [B(x) - xB(1)] \right|$$

$$= O[n^{-1/4} (\log n)^{1/2} (\log \log n)^{1/4}]$$

almost surely as $n \rightarrow \infty$.

This theorem is of use in the investigation of the asymptotic behavior of functionals of $\{F_n(x); 0 \le x \le 1\}$, especially functionals dependent on n.

2. We construct $G_n(x)$ as follows; let Y_1, Y_2, \cdots be independent exponential variables with mean 1. Let $S(k) = Y_1 + \cdots + Y_k$, $k = 1, 2, \cdots$ and let S(0) = 0. Set

$$G_n(x) = k/n$$
 if $S(k)/S(n+1) \le x < S(k+1)/S(n+1)$.

This $\{G_n(x); 0 \le x \le 1\}$ has the same distribution as $\{F_n(x); 0 \le x \le 1\}$ for each n. We now record a series of lemmas.

LEMMA 1. There is a Brownian motion W such that

(2)
$$\sup_{1 \le k \le n} |k - S(k) - W(k)| = O[n^{1/4} (\log n)^{1/2} (\log \log n)^{1/4}]$$

almost surely as $n \rightarrow \infty$.

PROOF. This result is deducible from Theorem 1.5 of Strassen [8].

LEMMA 2. Almost surely as $n \rightarrow \infty$

(3)
$$\sup_{0 \le x \le 1} |S(nG_n(x)) - xS(n+1)| = O[n^{1/4}].$$