RELATIVE GROTHENDIECK RINGS¹

BY T. Y. LAM AND I. REINER

Communicated by I. Reiner, January 17, 1969

1. Introduction. Let H be a subgroup of the finite group G, and let Ω be a field of characteristic p, where we assume $p \neq 0$ to avoid trivial cases. Form the free abelian group \mathfrak{A} on the symbols [M], where M ranges over the representatives of a full set of isomorphism classes of finitely generated left ΩG -modules (hereafter called "G-modules" for brevity). Let \mathfrak{B} be the subgroup of \mathfrak{A} generated by all expressions [M] - [L] - [N], where

$$0 \to L \to M \to N \to 0$$

ranges over all *H*-split exact sequences of *G*-modules. The *relative* Grothendieck ring a(G, H) is defined as $\mathfrak{A}/\mathfrak{B}$, acquiring a ring structure by letting $[M][M'] = [M \otimes_{\mathfrak{Q}} M']$ where *G* acts diagonally on the tensor product.

The structure of a(G, H) has been investigated by the authors in two earlier articles [1], [2]. In the extreme case where H=1, the ring a(G, 1) is just the ring of generalized Brauer characters of G. On the other hand, a(G, G) is the representation ring of G, gotten by considering G-modules relative to direct sum. In general, a(G, K) $\cong a(G, H)$ if H is a Sylow p-subgroup of K, and so there is no loss of generality in assuming hereafter that H is a p-subgroup of G.

Let k(G, H) be the ideal of a(G, G) spanned by all (G, H)-projective G-modules. The Cartan map

$$\kappa: k(G, H) \to a(G, H)$$

is defined by $[M] \rightarrow [M]$, and as shown in [2], κ is a monomorphism. Furthermore, the cokernel of κ is a *p*-torsion abelian group when $H\Delta G$.

We have previously established

THEOREM 1 [1, THEOREMS 3.4 AND 4.4]. If $H\Delta G$, where H is a cyclic p-group, then a(G, H) has a finite free Z-basis. Furthermore, if G is a semidirect product $H \cdot A$, then there is a Z-isomorphism

$$a(G, H) \cong a(H, H) \otimes_{\mathbb{Z}} a(G, 1).$$

This isomorphism is in fact a ring isomorphism when G is the direct product $H \times A$.

¹ This research was partially supported by the National Science Foundation.