10. -, A variational method for functions of bounded boundary rotation, Trans. Amer. Math. Soc. 138 (1969), 133-144.
11. G. Polya and M. Schiffer, Sur la representation conforme de l'exterieur d'une courbe fermee convexe, C. R. Acad. Sci. Paris Ser. 248 (1959), 2837-2839.
12. Ch. Pommerenke, Über einige Klassen meromorpher schlichter Funktionen, Math. 7. 78 (1962), 263-284.
13. W. C. Royster, Convex meromorphic functions, MacIntyre Memorial Volume, Ohio University, Athens, Ohio, 1969.
14. M. Schiffer, Univalent functions whose n first coefficients are real, J. Analyse Math. 18 (1967), 329-349.

University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27514 and
Princeton University, Princeton, New Jersey 08540

MAXIMAL FUNCTIONS FOR A CLASS OF LOCALLY COMPACT NONCOMPACT GROUPS

BY KEITH PHILLIPS

Communicated by Saunders Mac Lane, September 19, 1968
In this note, we briefly describe some maximal theorem results to be proved in detail in an appendix (§4) to the paper [PT]. In [PT], maximal averages taken over sets of unbounded measure for functions of several variables over a local field are used to study singular integrals. The results on maximal functions can, however, be obtained for a large class of topological groups, and it is these results which we will describe. The results generalize theorems on maximal functions appearing in $[\mathrm{EH}]$, where the sets over which averages are taken have bounded measures. Let Z denote the integers. Our hypothesis is that G is a locally compact group (written multiplicatively) with left Haar measure λ and that $\left\{U_{n}: n \in Z\right\}$ is a neighborhood base at the identity e consisting of relatively compact Borel sets satisfying
(i) $U_{n+1} \subset U_{n}$ for all $n \in Z$ and $\lim _{n \rightarrow-\infty} \lambda\left(U_{n}\right)=\infty$;
(ii) $\lambda\left(U_{n} U_{n}^{-1}\right)<C \lambda\left(U_{n}\right), C$ constant, $n \in Z$;
(1)
(iii) For each $n \in Z$ there is an $l(n) \in Z$ such that $U_{l(n)} \supset U_{n}^{-1} U_{n}$ and $U_{j} \perp U_{n}^{-1} U_{n}$ if $j>l(n)$. And, there is a constant α such that $\lambda\left(U_{l(n)}\right)<\alpha \lambda\left(U_{n}\right)$ for all $n \in Z$.
For such an " M-sequence," we can prove $[\mathrm{PT}]$ the following theorem.

