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1. Introduction. Let S(g) denote the class of functions S(z) analytic 
in D = {z: \ z\ < 1} which have the integral representation 

(1) 5(a) = f Tg(z,t)dm(t) 

where m(t) is a nondecreasing function on 0^/^27r, Jlv dm(t) = 1 and 
g(z, t) is given for the class. We shall assume that g(z, t) and gt(z, t) 
are analytic functions of z in D and Lipschitz continuous with respect 
to t (uniformly for z in a compact subset of D). G. M. Goluzin has 
developed a variational method for §>(g) [5] which has proved to be 
useful in the study of extremal problems within various classes of 
analytic functions [4], [5], [9], [lO]. 

In this note we present a generalization of the Goluzin variational 
method. The generalization enables one to preserve side conditions 
imposed on the functions m{t) in (1). Our work was motivated by the 
fact that various classes of meromorphic functions have structural 
formulas based on (1) where m(t) must satisfy the additional condi­
tion /%* e-udm{t) = 0. 

Complete proofs and applications of our results will be published 
elsewhere [8]. 

2. Constrained variations. Let A, (? = 1, • • - , « ) be real numbers 
and let uv{t) (P = 1, • • • , n) be real valued C1 functions on 0^^27r . 
The class S(g, A) is defined to be the class of functions (1) in $(g) that 
satisfy the constraints 

(2) I uv(t)dm(t) = A„ y = 1, • • • ,n. 
J o 

Let / (Zi , • • • , Tn) denote the determinant of the matrix \ul (Tj)] 
(j, k = l, • • • , n) and let Jv = J(Ti, • • • , 7V_i, T, Tv+U • • • , Tn) 
(v = l, • • • , n) where T, Ti, • • • , TnÇz[0, 2w]. A set of points 
T, Tu • • • , Zn in [0, 27r] is said to be admissible for m(t) if m(t) is not 
constant in any neighborhood of each of these points and if the de­
terminants J {Tu ' ' ' i Tn), J, (y = l, • • • , n) are all nonzero. 
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