CROSS SECTIONALLY SIMPLE SPHERES

BY W. T. EATON
Communicated by R. H. Bing, April 16, 1968

J. W. Alexander [1] suggested that a 2 -sphere S in E^{3} is tame if each horizontal cross section is either a point or a simple closed curve. It is not clear whether he presumed that his proof was valid for nonpolyhedral spheres, but his proof implies that there is a homeomorphism h of E^{3} onto itself which is invariant on horizontal planes and which takes S onto a round 2 -sphere. Bing [6] has described a nonpolyhedral 2-sphere S for which there is no such homeomorphism h.

In this paper we give a proof of Alexander's conjecture. The proof, however, is not elementary as it depends indirectly on Dehn's Lemma [8], Bing's Side Approximation Theorem [2], and Bing's Characterization of tame spheres with homeomorphic approximations in their complementary domains [4].

We assume that S lies exactly between the planes $z=1$ and $z=-1$ and we let $J_{t}=S \bigcap\{(x, y, z) \mid z=t\}$ be the horizontal cross section of S at the $z=t$ plane. Note that J_{t} is a simple closed curve for $-1<t<1$ and J_{-1}, J_{1} are points. We let D_{t} be the disk J_{t} bounds in the $z=t$ plane. The ϵ-neighborhood of a set X is denoted by $N(X, \epsilon), \operatorname{Diam} A$ is the diameter of A, and S^{1} stands for the standard 1 -sphere. If $-1<\alpha<\beta<1$ and h is a homeomorphism of $S^{1} \times[\alpha, \beta]$ into Int S such that
(1) $h(y \times[\alpha, \beta])$ is a vertical line segment for $y \in S^{1}$, and
(2) $h\left(S^{1} \times t\right)$ lies in the plane $z=t$ for $t \in[\alpha, \beta]$,
then $A(h, t)$ denotes the annulus in the $z=t$ plane bounded by $h\left(S^{1} \times t\right)$ and $J_{i}, S(\alpha, \beta)$ denotes the annulus $S \cap\{(x, y, z) \mid \alpha \leqq z \leqq \beta\}$ and $T(h)$ denotes the torus $h\left(S^{1} \times[\alpha, \beta]\right) \cup A(h, \alpha) \cup A(h, \beta) \cup S(\alpha, \beta)$.

Lemma 1. If $t \in(-1,1)$ and $\epsilon>0$ then there are rational numbers α and β and a homeomorphism $h: S^{1} \times[\alpha, \beta] \rightarrow$ Int S such that
(1) $-1<\alpha<t<\beta<1$,
(2) $h(y \times[\alpha, \beta])$ is a vertical line segment for each $y \in S^{1}$,
(3) $h\left(S^{1} \times r\right)$ lies in the horizontal plane $z=r$ for $r \in[\alpha, \beta]$,
(4) $T(h)$ lies in an ϵ-neighborhood of J_{t}, and
(5) $h\left(S^{1} \times t\right)$ is homeomorphically within \in of J_{t}.

Proof. There is a simple closed curve J in the $z=t$ plane such that $J \subset$ Int S, J is homeomorphically within ϵ of J_{i}, and the annulus A bounded by J and J_{t} in the $z=t$ plane lies in $N\left(J_{t}, \epsilon\right) . J$ may be moved

