CROSS SECTIONALLY SIMPLE SPHERES

BY W. T. EATON

Communicated by R. H. Bing, April 16, 1968

J. W. Alexander [1] suggested that a 2-sphere S in E^3 is tame if each horizontal cross section is either a point or a simple closed curve. It is not clear whether he presumed that his proof was valid for non-polyhedral spheres, but his proof implies that there is a homeomorphism h of E^3 onto itself which is invariant on horizontal planes and which takes S onto a round 2-sphere. Bing [6] has described a non-polyhedral 2-sphere S for which there is no such homeomorphism h.

In this paper we give a proof of Alexander's conjecture. The proof, however, is not elementary as it depends indirectly on Dehn's Lemma [8], Bing's Side Approximation Theorem [2], and Bing's Characterization of tame spheres with homeomorphic approximations in their complementary domains [4].

We assume that S lies exactly between the planes z=1 and z=-1 and we let $J_t=S\cap \{(x,y,z)\,|\,z=t\}$ be the horizontal cross section of S at the z=t plane. Note that J_t is a simple closed curve for -1< t<1 and J_{-1} , J_1 are points. We let D_t be the disk J_t bounds in the z=t plane. The ϵ -neighborhood of a set X is denoted by $N(X,\epsilon)$, Diam A is the diameter of A, and S^1 stands for the standard 1-sphere. If $-1<\alpha<\beta<1$ and A is a homeomorphism of A into Int A such that

- (1) $h(y \times [\alpha, \beta])$ is a vertical line segment for $y \in S^1$, and
- (2) $h(S^1 \times t)$ lies in the plane z = t for $t \in [\alpha, \beta]$, then A(h, t) denotes the annulus in the z = t plane bounded by $h(S^1 \times t)$ and J_t , $S(\alpha, \beta)$ denotes the annulus $S \cap \{(x, y, z) | \alpha \le z \le \beta\}$ and T(h) denotes the torus $h(S^1 \times [\alpha, \beta]) \cup A(h, \alpha) \cup A(h, \beta) \cup S(\alpha, \beta)$.

LEMMA 1. If $t \in (-1, 1)$ and $\epsilon > 0$ then there are rational numbers α and β and a homeomorphism $h: S^1 \times [\alpha, \beta] \rightarrow \text{Int } S$ such that

- $(1) -1 < \alpha < t < \beta < 1,$
- (2) $h(y \times [\alpha, \beta])$ is a vertical line segment for each $y \in S^1$,
- (3) $h(S^1 \times r)$ lies in the horizontal plane z = r for $r \in [\alpha, \beta]$,
- (4) T(h) lies in an ϵ -neighborhood of J_t , and
- (5) $h(S^1 \times t)$ is homeomorphically within ϵ of J_t .

PROOF. There is a simple closed curve J in the z=t plane such that $J \subset Int S$, J is homeomorphically within ϵ of J_t , and the annulus A bounded by J and J_t in the z=t plane lies in $N(J_t, \epsilon)$. J may be moved