ON SINGULARITIES OF SURFACES IN E4

BY JOHN A. LITTLE

Communicated by Raoul Bott, July 29, 1968

1. Notation. Let $f: M^2 \rightarrow E^4$ be an immersion of a compact orientable surface. Let $e_1e_2e_3e_4$ be orthonormal righthanded frames, e_1e_2 tangent and agreeing with a fixed orientation of M. As usual define ω_i and ω_{ij} by

$$df = \sum \omega_i e_i$$
 $de_i = \sum \omega_{ij} e_j$, $i = 1, \dots, 4$.

The connection forms in the tangent and normal bundles are respectively ω_{12} and ω_{34} . The respective curvature forms are $d\omega_{12}$ and $d\omega_{34}$. The Gauss curvature K and the normal curvature N satisfy (and may be defined by)

$$d\omega_{12} = -K\omega_1 \wedge \omega_2, \qquad d\omega_{34} = -N\omega_1 \wedge \omega_2.$$

2. Statement of the main results.

THEOREM 1. Suppose $f: M \rightarrow E^4$ is an immersion such that N is everywhere positive (negative). Then

$$\chi(NM) = -2\chi(M) \qquad (\chi(NM) = 2\chi(M)).$$

Here $\chi(NM)$ is the Euler characteristic of the normal bundle and $\chi(M)$ is the Euler characteristic of M.

COROLLARY 2. Every immersion of the sphere or torus must have a point where N=0.

The proof of Theorem 1 uses a geometrically defined field of tangent axes. In order to define these axes we review some of the local theory of surfaces in E^4 .

3. The curvature ellipse [1]. The local invariants of a surface in E^4 are characterized by an ellipse in the normal plane. To define this ellipse let us first define a map $\eta: S_p \to N_p$, S_p is the unit tangent circle at p and N_p is the normal plane at p. Let $\gamma(s)$ be a geodesic of M through p such that $d\gamma/ds(p) = e_1$, where e_1 is a unit vector at p. Define η by $\eta(e_1) = d^2\gamma/ds^2(p)$. The curvature ellipse is the image of S_p under η .

The mean curvature vector \mathcal{X} is the position vector of the center of this ellipse.