ON SINGULARITIES OF SURFACES IN E^{4}

BY JOHN A. LITTLE
Communicated by Raoul Bott, July 29, 1968

1. Notation. Let $f: M^{2} \rightarrow E^{4}$ be an immersion of a compact orientable surface. Let $e_{1} e_{2} e_{3} e_{4}$ be orthonormal righthanded frames, $e_{1} e_{2}$ tangent and agreeing with a fixed orientation of M. As usual define ω_{i} and $\omega_{i j}$ by

$$
d f=\sum \omega_{i} e_{i} \quad d e_{i}=\sum \omega_{i j} e_{j}, \quad i=1, \cdots, 4
$$

The connection forms in the tangent and normal bundles are respectively ω_{12} and ω_{34}. The respective curvature forms are $d \omega_{12}$ and $d \omega_{34}$. The Gauss curvature K and the normal curvature N satisfy (and may be defined by)

$$
d \omega_{12}=-K \omega_{1} \wedge \omega_{2}, \quad d \omega_{34}=-N \omega_{1} \wedge \omega_{2} .
$$

2. Statement of the main results.

Theorem 1. Suppose f: $M \rightarrow E^{4}$ is an immersion such that N is everywhere positive (negative). Then

$$
\chi(N M)=-2 \chi(M) \quad(\chi(N M)=2 \chi(M))
$$

Here $\chi(N M)$ is the Euler characteristic of the normal bundle and $\chi(M)$ is the Euler characteristic of M.

Corollary 2. Every immersion of the sphere or torus must have a point where $N=0$.

The proof of Theorem 1 uses a geometrically defined field of tangent axes. In order to define these axes we review some of the local theory of surfaces in E^{4}.
3. The curvature ellipse [1]. The local invariants of a surface in E^{4} are characterized by an ellipse in the normal plane. To define this ellipse let us first define a map $\eta: S_{p} \rightarrow N_{p}, S_{p}$ is the unit tangent circle at p and N_{p} is the normal plane at p. Let $\gamma(s)$ be a geodesic of M through p such that $d \gamma / d s(p)=e_{1}$, where e_{1} is a unit vector at p. Define η by $\eta\left(e_{1}\right)=d^{2} \gamma / d s^{2}(p)$. The curvature ellipse is the image of S_{p} under η.

The mean curvature vector $\mathfrak{H C}$ is the position vector of the center of this ellipse.

