5. ——, Free differential calculus. III: Subgroups, Ann. of Math. (2) 64 (1956), 407-419.

6. ——, Some problems in knot theory, Topology of 3-manifolds symposium, Prentice-Hall, Englewood Cliffs, N. J., 1962.

7. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26.

8. D. L. Sumners, On π_2 of S^2 in S^4 (to appear).

FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306

CLASSIFICATION OF KNOTS IN CODIMENSION TWO

BY RICHARD K. LASHOF AND JULIUS L. SHANESON

Communicated by W. Browder, May 31, 1968

Introduction. In this paper we consider smooth knots, i.e., smooth embeddings $\phi: S^n \rightarrow S^{n+2}$, $n \ge 3$. Two knots ϕ and η are said to be equivalent if there is a diffeomorphism $f: S^{n+2} \rightarrow S^{n+2}$ such that $f\phi(S^n) = \eta(S^n)$. The embedding ϕ extends to an embedding $\bar{\phi}: S^n \times D^2 \rightarrow S^{n+2}$, and any two such extensions are ambient isotopic relative to $S^n \times 0$. Hence if $A = cl(S^{n+2} - \bar{\phi}(S^n \times D^2))$, the pair $(A, \partial A)$ is determined up to diffeomorphism by the equivalence class of ϕ . We call $(A, \partial A)$ the complementary pair, or simply the complement, of the knot ϕ . In this paper we show that if $\pi_1 A$, the fundamental group of the knot, is infinite cyclic, then there is at most one knot inequivalent to ϕ with complementary pair $(B, \partial B)$ of the same homotopy type as $(A, \partial A)$. This result is of interest because for any $n \ge 3$ there are many inequivalent knots $\phi: S^n \rightarrow S^{n+2}$ with fundamental group Z, see for example [12]. (The result also holds in the P.L. case, provided ϕ extends to a P.L.-embedding $\bar{\phi}: S^n \times D^2 \rightarrow S^{n+2}$.)

1. Knots with diffeomorphic complements. In [4], Gluck showed that homeomorphisms of $S^2 \times S^1$ are isotopic if and only if they are homotopic and used this result to conclude that there are at most two knots $\phi: S^2 \rightarrow S^4$ with homeomorphic exteriors. In [1], W. Browder studied the pseudo-isotopy classes of diffeomorphisms (and P.L. equivalences) of $S^1 \times S^n$ for $n \ge 5$. He showed that two P.L. equivalences are pseudo-isotopic if and only if they are homotopic. For the group $\mathfrak{D}(S^n \times S^1)$ of pseudo-isotopy classes of diffeomorphisms, he obtained the exact sequence