THE SECOND HOMOTOPY GROUP OF SPUN 2-SPHERES IN 4-SPACE

BY J. J. ANDREWS AND S. J. LOMONACO¹

Communicated by R. H. Bing, May 27, 1968

1. Introduction. Andrews and Curtis [1] have shown that the second homotopy group of the complementary domain of a locally flat 2-sphere S^2 in the 4-sphere S^4 may not be trivial. This was shown to be the case if S^2 is formed by spinning the trefoil knot. Epstein [3] has shown that if S^2 is a spun nontrivial 2-sphere, then $\pi_2(S^4-S^2)$ is a free abelian group of infinite rank. Fox [6] has suggested that it might be more fruitful to consider the second homotopy group with its π_1 -action, and has asked for an algorithm for calculating $\pi_2(S^4-S^2)$ as a $J\pi_1$ -module. Sumners [8] has constructed a knotted 2-sphere in S^4 for which π_2 has nontrivial $J\pi_1$ -torsion.

The following theorem gives the structure of π_2 as a $J\pi_1$ -module for the case of spun 2-spheres.

THEOREM 2. If $k(S^2) \subset S^4$ is a 2-sphere formed by spinning an arc A about the sphere S^2 and $(x_0, x_1, \dots, x_n; r_1, r_2, \dots, r_m)^*$ is a presentation of $\pi_1(S^4-k(S^2))$ with x_0 the image of the generator of $\pi_1(S^2-A)$ under the inclusion map, then

$$\left(X_i(1 \leq i \leq n): \sum_{i=1}^n \left(\frac{\partial r_j}{\partial x_i} \times X_i = 0 \ (1 \leq j \leq m)\right)\right)$$

is a presentation of $\pi_2(S^4 - k(S^2))$ as a $J\pi_1$ -module.

2. Outline of proof. Let S^n be the standard *n*-sphere. Let S^n_{\pm} be the closed domains of $S^n - S^{n-1}$. Let A be an arc in S^3_+ which meets S^2 only in the end-points of A. Now rotate S^3_+ about S^2 . Then A sweeps out a 2-sphere $k(S^2)$ called a spun 2-sphere [2].

THEOREM 1. If $k(S^2) \subset S^4$ is a spun 2-sphere, then $\pi_2(S^4 - k(S^2)) \simeq K/[K,K]$, where K is the kernel of the homomorphism $i_*: \pi_1(S^3 - k(S^2)) \rightarrow \pi_1(S^4 - k(S^2))$ induced by inclusion and [K, K] is the commutator subgroup of K.

¹ Supported by NSF Grant GP-5458.