ON PROPERTIES OF SELF RECIPROCAL FUNCTIONS

BY V. V. L. N. RAO

Communicated by M. Gerstenhaber, March 25, 1968

Following is the notation of Hardy and Titchmarsh [1]. We denote a function as $R\mu$ if it is self reciprocal for Hankel transforms of order μ , so that it is given by the formula

(1.1)
$$f(x) = \int_0^\infty J_{\mu}(xy) f(y) \sqrt{xy} dy,$$

where $J_{\mu}(x)$ is a Bessel function of order μ . For $\mu = \frac{1}{2}$ and $-\frac{1}{2}$, f(x) is denoted as R_{s} and R_{c} respectively.

Brij Mohan [2] has shown that if f(x) is $R\mu$, and

$$P(x) = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} 2^{s} \Gamma\left(\frac{1}{4} + \frac{\mu}{2} + \frac{s}{2}\right) \Gamma\left(\frac{1}{4} + \frac{\nu}{2} + \frac{s}{2}\right) \theta(s) x^{-s} ds,$$

where

(1.2)
$$\theta(s) = \theta(1-s) \text{ and } 0 < c < 1,$$

then P(x) is a Kernel transforming $R_{\mu}(R_{\nu})$ into $R_{\nu}(R_{\mu})$. As an example of (1.2) Brij Mohan has shown that the function

(1.3)
$$x^{\nu+1/2}e^{-x}$$

is a Kernel transforming R_{ν} into $R_{\nu+1}$. In particular, putting $\nu = \frac{1}{2}$, we find that the Kernel

(1.4)
$$xe^{-x}$$
,

transforms R_s into $R_{3/2}$. Again, I have shown in a previous paper [3] that the Kernel

$$(1.5) \qquad \sqrt{x}e^{-x/2},$$

transforms R_1 into R_2 . From (1.4) and (1.5) we find that "A Kernel transforming R_1 into R_2 will have its square transforming R_1 into $R_{3/2}$." Again Sneddon [4] has shown that

$$\int_0^\infty e^{-x} x^m \mathrm{Ln}(x) dn = (-1)^m m! \int_0^\infty \frac{d^{n-m}}{dn^{n-m}} (x^n e^{-x}) dx,$$

Ln(x) being Laguerre polynomial of order *n*. Putting m = n, we obtain that