STABLE MANIFOLDS FOR HYPERBOLIC SETS

BY MORRIS W. HIRSCH AND CHARLES C. PUGH

Communicated by Jürgen K. Moser, August 20, 1968

1. Introduction. We present a version of the "Generalized stable manifold theorem" of Smale [2, p. 781]. Details will appear in the Proceedings of the American Mathematical Society Summer Institute on Global Analysis.

Let *M* be a finite dimensional Riemannian manifold, $U \subset M$ an open set and $f: U \rightarrow M$ a C^k embedding $(k \in \mathbb{Z}_+)$. A set $\Lambda \subset U$ is a hyperbolic set provided

(1) $f(\Lambda) = \Lambda$;

(2) $T_{\Lambda}M$ has a splitting $E^* \oplus E^u$ preserved by Df;

(3) there exist numbers C > 0 and $\tau < 1$ such that for all $n \in \mathbb{Z}_+$,

 $\max\{\|(Df \mid E^{s})^{n}\|, \|(Df \mid E^{u})^{-n}\|\} \leq C\tau^{n}.$

It is known (J. Mather; see also [1]) that the Riemannian metric on M can be chosen so that C=1; we assume C=1 in what follows. The splitting is unique.

Notation. If X is a metric space, $B_r(x) = \{y \in X | d(y, x) \leq r\}$. If E is a Banach space, $BE = B_1(0)$. If $E \to X$ is a Banach bundle, $BE = \bigcup_{x \in X} BE_x$.

A submanifold $W \subset M$ is a stable manifold through x of size β if $W \cap B_{\beta}(x)$ is closed and consists of all $y \in B_{\beta}(x)$ such that $f^{n}(y)$ is defined and in $B_{\beta}f^{n}(x)$ for all $n \in \mathbb{Z}_{+}$.

An unstable manifold is defined to be a stable manifold for f^{-1} . Unstable manifolds are easier to handle in proofs, but stable ones are easier to describe notationally. Hence, we confine ourselves to the stable case.

A C^k stable manifold system with bundle E is a family of C^k submanifolds $\{W_x\}_{x \in \Lambda}$ such that

(4) there exists $\beta > 0$ such that each W_x is a stable manifold through x of size β ;

(5) E is a vector bundle over Λ , and there is a map $\phi: V \rightarrow M$ of a neighborhood V of the zero section of E such that ϕ maps each $V \cap E_x$ diffeomorphically onto W_x ;

(6) ϕ is fibrewise C^k in this sense: Let $H: A \times R^q \to p^{-1}A$ be a trivialization of E over $A \subset \Lambda$ with $H(A \times D^q) \subset V$. Then each map $\theta_x = \phi \circ H | x \times D^q: D^q \to M$ is C^k , and $\theta: A \to C^k(D^q, M)$ is continuous.