A GENERALIZATION OF THE AHLFORS-HEINS THEOREM¹

BY MATTS ESSÉN

Communicated by W. H. Fuchs, August 29, 1968

Let *D* be the complex plane cut along the negative real axis. We are going to consider a function *u* subharmonic in *D*. Let $M(r) = \sup_{|z|=r} u(z)$ and $m(r) = \inf_{|z|=r} u(z)$. We also introduce, for r > 0, $v(r) = \limsup_{z \to -r+i0} u(z)$, $\bar{v}(r) = \limsup_{z \to -r-i0} u(z)$ and $u(-r) = \max(v(r), \bar{v}(r))$. In the whole paper, $z = \operatorname{re}^{i\theta}$. Our main result is

THEOREM 1. Let λ be a number in the interval (0, 1) and let $u \ (\neq -\infty)$ be a function subharmonic in D that satisfies

(1)
$$u(-r) - \cos \pi \lambda \ u(r) \leq 0.$$

Then either $\lim_{r\to\infty} r^{-\lambda}M(r) = \infty$ or

(A) there exists a number α such that

(2)
$$\lim_{r\to\infty} r^{-\lambda}u(re^{i\theta}) = \alpha \cos \lambda\theta, \qquad |\theta| < \pi,$$

except when θ belongs to a set of logarithmic capacity zero.

(B) Given θ_0 , $0 < \theta_0 < \pi$, there exists an r-set Δ_0 of finite logarithmic length such that (2) holds uniformly in $\{z \mid |\theta| \leq \theta_0\}$ when r is restricted to lie outside of Δ_0 .

REMARK. When $1/2 < \lambda < 1$, condition (1) is interpreted in the following way at points where $u(-r) = \infty$.

(1a)
$$\limsup_{z \to r} (u(x+iy) + u(-x+iy)) \leq (1 + \cos \pi \lambda) u(r),$$

(1b)
$$\limsup_{z \to \tau} (u(-x+iy) - \cos \pi \lambda \ u(x+iy)) \leq 0.$$

Theorem 1 can be compared to the main result of Kjellberg [6].

THEOREM 2. Let u be subharmonic in the complex plane and let λ be a number in the interval (0, 1). If $m(r) - \cos \pi \lambda$ $M(r) \leq 0$, then the (possibly infinite) limit $\lim_{r\to\infty} r^{-\lambda}M(r)$ exists.

In order to clarify the connection between Theorem 1 and the Ahlfors-Heins theorem [1], we also state Theorem 1 in the following equivalent way.

¹ Research supported in part by the National Science Foundation.