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Let f(z) be an entire function of order p<1. The classical “cos mp
theorem” of Valiron and Wiman [4, pp. 40, 51] asserts that if

we) = min |f@|, M@ = max |G|,

then, given ¢>0, the inequality
1) log u(r) > (cos mp — €)log M(r)

holds for a sequence r =7,—-+ «.

We consider those functions f(2) for which (1) is the best possible
inequality, and discuss the global asymptotic behavior of such func-
tions.

THEOREM 1. Let f(2) be an entire function of order p (0=5p<1), and
suppose

2 log u(r) < [cos mp + &(r)] log M (r)

where €(r)—0 as r— o,
Then there exists a set E of logarithmic density zero and a slowly vary-
ing function? Y(r) such that

@) log M(r) = r?y(r) (r € E),
4@ n(r, 0) = [sin wp/m + o(D]r¥(r)  (r— @, r & E)

(where, as usual, n(r, 0) denotes the number of zeros of f(z) in ]zl =r),
(5)  logu(r) = [cos mp + o(D)]ry(r)  (r— w,r & EU H),

where H has (linear) density zero.
Further, there exists a real-valued function 6(r) such that if k> 1 and
6> 0 are given and v(r) denotes the number of zeros of f(2) in the region

1 The first author was partially supported by NSF grant 4192-50-1395; the second
author was partially supported by NSF grant GP-5728.

2 A function y(r) is said to vary slowly if it is defined and positive for all r>ro
and satisfies limy.., ¢(o7) /¥ (r)—1 (0<o< »). For a useful discussion of the properties
of such functions see, for example, [9, p. 419]. For a discussion of linear and loga-
rithmic densities see [4, p. 5).
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