DIFFERENTIABLE FUNCTIONS ON c_0

BY JOHN WELLS

Communicated by Richard Palais, September 3, 1968.

If E and F are two Banach spaces, denote by $C^{p,q}(E, F)$, $0 \le q \le p \le \infty$, those functions in $C^p(E, F)$ whose derivatives of order less than or equal to q are bounded. Call a Banach space, E, $C^{p,q}$ smooth if there exists a nonzero $C^{p,q}$ function on E with bounded support. Then finite dimensional spaces are $C^{\infty,\infty}$ smooth and if an L_p space is C^q smooth it is also $C^{q,q}$ smooth. Although c_0 is known to possess a C^∞ (away from zero) norm as described in Bonic and Frampton [1], it is a consequence of the following theorem that c_0 is not $C^{2,2}$ smooth.

THEOREM. Let $f \in C^1(c_0, R)$ with Df uniformly continuous. Then the support of f is unbounded.

PROOF. If not then there would exist an $f \in C^1(c_0, R)$ such that f(0) = 1, f(x) = 0 for $||x|| \ge 1$ and Df is uniformly continuous. Pick N such that $||h|| \le 1/N$ implies $||Df(x+h) - Df(x)|| \le 1/2$. Then the mean value theorem gives that $|f(x+h) - f(x) - Df(x)(h)| \le 1/2||h||$ when $||h|| \le 1/N$. Let A be the set of all x in c_0 such that $2^N - 1$ of the first 2^N components of x have absolute value 1/N, the remaining component has absolute value less than or equal to 1/N and all the components after the first 2^N are zero. Since A is connected and even, we can pick inductively $h_1, \dots, h_N \in A$ such that $Df(h_1 + \dots + h_{k-1}) \cdot (h_k) = 0$ and $h_1 + \dots + h_k$ has at least 2^{n-k} components equal to k/N. Then

$$||h_1+\cdots+h_N||=1$$

and

$$|f(h_1 + \dots + h_N) - f(0)|$$

$$\leq \sum_{k=1}^N |f(h_1 + \dots + h_k) - f(h_1 + \dots + h_{k-1})|$$

$$- Df(h_1 + \dots + h_{k-1})h_k| \leq \sum_{k=1}^N \frac{1}{2} ||h_k|| = \frac{1}{2}$$

which is a contradiction.

COROLLARY 1. Let $f \in C^1(c_0, R)$ and Df be uniformly continuous. Then $f(\delta U)$ is dense in f(U) for all bounded open sets U.