ON POLYNOMIALS AND ALMOST-PRIMES

BY G. J. RIEGER ${ }^{1}$

Communicated by Ivan Niven, July 31, 1968
There exist infinitely many numbers $n^{2}-2$ having at most 3 prime factors [1], [3]. We prove here that there exist infinitely many numbers $p^{2}-2$ (p prime) having at most 5 prime factors; a similar result with the bound 7 instead of 5 can be found in [5] and, under the Riemann hypothesis, with the bound 5 . We use the sieve-method, essentially in the version of Jurkat and Richert as given in [6], and also ideas of Kuhn, de Bruijn, and Bombieri.

Let

$$
\begin{aligned}
& w(u):=u^{-1} \quad \text { for } 1 \leqq u \leqq 2, \\
& (u w(u))^{\prime}:=w(u-1) \quad \text { for } u \geqq 2, \\
& D(u):=u \quad \text { for } 0 \leqq u \leqq 1, \\
& \left(u^{-1} D(u)\right)^{\prime}:=-u^{-2} D(u-1) \quad \text { for } u \geqq 1 ;
\end{aligned}
$$

here we take the right-hand derivative for integers $u \geqq 0$; let w be continuous at $u=2$ and D be continuous at $u=1$. Define

$$
\begin{aligned}
\lambda(u): & =e^{\gamma} u^{-1}\left(u w(u)-D^{\prime}(u-1)\right) \\
\Lambda(u): & =e^{\gamma} u^{-1}\left(u w(u)+D^{\prime}(u-1)\right) \quad(u \geqq 1)
\end{aligned}
$$

where γ is the Euler constant.
Let P be the set of all primes $p \equiv \pm 1 \bmod 8 ; p_{0}:=1$; denote by p_{j} the j th number of P in natural order. Denote by μ the Moebius function and by ϕ the Euler function; let

$$
\begin{aligned}
& V(n):=\sum_{p^{a} \mid n} 1, \quad Q:=\{d: \mu(d) \neq 0 \wedge(p \mid d \Rightarrow p \in P)\}, \\
& f(d):=2^{-V(d)} \phi(d), \quad g(d):=f(d) \prod_{p \mid d}\left(1-f(p)^{-1}\right) \quad(d \in Q), \\
& P(\rho):=\prod_{1 \leq j \leq \rho} p_{j}, \quad R(\rho):=\prod_{1 \leqq j \leq \rho}\left(1-f\left(p_{j}\right)^{-1}\right), \\
& S(x, \rho):=\sum_{1 \leq a \leq x ; a \mid P(\rho)} g(a)^{-1} .
\end{aligned}
$$

Using generating functions we find

[^0]
[^0]: ${ }^{1}$ Supported by National Science Foundation Grant GP 9038.

