ON GENERATORS FOR VON NEUMANN ALGEBRAS¹

BY WARREN WOGEN

Communicated by John Wermer, May 17, 1968.

1. It has been conjectured that every von Neumann algebra on a separable Hilbert space has a single generator. The conjecture is true for type I algebras [3] and for hyperfinite algebras [7, Theorem 1].

T. Saitô [6] showed recently that for a certain class of von Neumann algebras, every algebra generated by two operators has a single generator. We show in §2 of this paper that every finitely generated algebra of the class has a single generator. In §3, we prove that every properly infinite von Neumann algebra on a separable Hilbert space is singly generated.

Throughout this paper, \mathfrak{K} will denote a separable complex Hilbert space. Operator always means bounded linear operator on a Hilbert space. $\mathfrak{G}(\mathfrak{K})$ is the set of bounded linear operators on \mathfrak{K} . If \mathfrak{A} is a von Neumann algebra, then \mathfrak{A}' is the commutant of \mathfrak{A} , and for $2 \leq n \leq \aleph_0$, $M_n(\mathfrak{A})$ is the algebra of $n \times n$ matrices with entries in \mathfrak{A} which act boundedly on $\sum_{k=1}^n \oplus \mathfrak{K}$. $\mathfrak{R}(A, B, \cdots)$ denotes the von Neumann algebra generated by the family $\{A, B, \cdots\}$ of operators.

The author wishes to thank Dr. D. M. Topping for his helpful suggestions regarding this paper.

2. If α is a von Neumann algebra, let (*) be the property that α is *-isomorphic to $M_2(\alpha)$. We will prove the following

THEOREM 1. Let a be a von Neumann algebra which satisfies (*) and suppose that a is finitely generated. Then a has a single generator.

The following lemmas are needed in the proof of the theorem. These lemmas are generalizations of lemmas proved by T. Saitô in [6].

LEMMA 1. Suppose a von Neumann algebra \mathfrak{A} is generated by n operators $A_1, A_2, \dots, A_n, n \geq 2$. Then $M_2(\mathfrak{A})$ is generated by the n+1operators

 $\begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} A_2 & 0 \\ 0 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} A_n & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & I \\ 0 & 0 \end{pmatrix}.$

¹ This paper is part of the author's doctoral thesis, and is supported in part by a NASA traineeship and NSF Grant GP8178.