IDEALS IN GROUP ALGEBRAS

BY PASQUALE PORCELLI AND H. S. COLLINS¹

Communicated by Henry Helson, August 9, 1968

Throughout this note G denotes a locally compact abelian group and a Hausdorff space. The ideal structure of the group algebra $L_1(G)$ is still not fully known. For example, at a recent international symposium on functional analysis held at Sopot, Poland, the following questions were asked: (i) find maximal nonclosed ideals in $L_1(G)$ and (ii) what type of prime ideals are in $L_1(G)$? The following theorems answer these questions.

THEOREM 1. Every maximal ideal of G is regular and, therefore, closed.

In view of Theorem 1 we have the following

LEMMA 1. If I is an ideal in $L_1(G)$ such that I is contained in exactly one maximal ideal, say M, then $\overline{I} = M$ (\overline{I} is the closure of I).

LEMMA 2. If a prime ideal I of $L_1(G)$ is contained in a maximal ideal, then I is contained in only one maximal ideal.

LEMMA 3. If I is an ideal of $L_1(G)$ such that I is contained in no maximal ideal, then $\overline{I} = L_1(G)$.

LEMMA 4. Suppose I is a prime ideal of $L_1(G)$ such that I is contained in no maximal ideal and M is a maximal ideal in $L_1(G)$. If $J = I \cap M$, then $\overline{J} = M$ (this holds for every M).

THEOREM 2. If I is a prime ideal in $L_1(G)$, then I is maximal if and only if I is closed.

Theorems 1 and 2 stated above answer questions raised at the Sopot symposium. In what follows \hat{G} denotes the dual group of G.

THEOREM 3. If \hat{G} contains an infinite set, then $L_1(G)$ contains nonclosed prime ideals.

(By the previous theorem each one is nonmaximal. The converse is true. See Corollary 4 below.)

THEOREM 4. The following two statements are equivalent.

- (1) Each prime ideal is contained in a unique maximal ideal.
- (2) G is a discrete group.

¹ Research supported by AFOSR grant number AF49(638)-1426.