MANIFOLDS HOMEOMORPHIC TO SPHERE BUNDLES OVER SPHERES

BY R. DE SAPIO ${ }^{1}$
Communicated by William Browder, July 9, 1968

1. Statement of results. Let E be the total space of a k-sphere bundle over the n-sphere with characteristic class $\alpha \in \pi_{n-1}\left(S O_{k+1}\right)$. We consider the problem of classifying, under the relation of orientation preserving diffeomorphism, all differential structures on E. It is assumed that E is simply connected, of dimension greater than five, and its characteristic class α may be pulled back to lie in $\pi_{n-1}\left(S O_{k}\right)$ (that is, the bundle has a cross-section). In [1] and [2] we gave a complete classification in the special case where $\alpha=0$. The more general classification Theorems 1 and 2 below include this special case. The proofs of these theorems are sketched in §2 below; detailed proofs will appear elsewhere. J. Munkres [6] has announced a classification up to concordance of differential structures in the case where the bundle has at least two cross-sections. (It is well known that concordance and diffeomorphism are not equivalent, concordance of differential structures being strictly stronger than diffeomorphism.)

Theorem 1. Let E be the total space of a k-sphere bundle over the n-sphere whose characteristic class ${ }^{2} \alpha$ may be pulled back to lie in $\pi_{n-1}\left(S O_{k}\right)$. Suppose that $2 \leqq k<n-1$. Then, under the relation of orientation preserving diffeomorphism, the diffeomorphism classes of manifolds homeomorphic to E are in a one-to-one correspondence with the equivalence classes on the set $\left(\theta_{n} / \Phi_{n}^{k+1}\right) \times \theta_{n+k}$, where $\left(A_{*}^{n}, U^{n+k}\right)$ and (B_{*}^{n}, V^{n+k}) are equivalent if and only if $A_{*}^{n}= \pm B_{*}^{n}$ and there exists $\beta \in \pi_{k}\left(S O_{n-1}\right)$ such that $U^{n+k}-V^{n+k}=\tau_{n, k}^{\prime}\left(A_{*}^{n} \otimes \beta\right)+\sigma_{n-1, k}(\alpha \otimes \beta)$.

Theorem 1 is also true in the case where $k=n-1$ and n is odd. The classification in the case where $n-1 \leqq k \leqq n+2$ is essentially the same as the above and is given in Theorem 2 below. Now we establish the notation used in Theorem 1.

Notation. Manifolds and diffeomorphisms are of class C^{∞}. The group of homotopy n-spheres under the connected sum operation +

[^0]
[^0]: ${ }^{1}$ The preparation of this paper was supported in part by National Science Foundation Grant \# GP 7036.
 ${ }^{2}$ Added in proof. Assume here and in Proposition 2 that α is of order 2 in π_{n-1} $\left(S O_{k+1}\right)$ in the case where $k<n-3$. This assumption is not made elsewhere.

