ON THE MINIMAL PROPERTY OF THE FOURIER PROJECTION

BY E. W. CHENEY,¹ C. R. HOBBY,¹ P. D. MORRIS,² F. SCHURER³ AND D. E. WULBERT²

Communicated by Henry Helson, September 10, 1968

Let C be the space of real 2π -periodic continuous functions normed with the supremum norm. Let P_n denote the subspace of trigonometric polynomials of degree $\leq n$. It is known [1] that the Fourier projection F of C onto P_n is *minimal*; i.e., if A is a projection of C onto P_n then $||F|| \leq ||A||$. We prove that F is the only minimal projection of C onto P_n . The proof is constructed by verifying the assertions listed below. Details will appear elsewhere.

ASSERTION. If there exists a minimal projection different from F, then there exist minimal projections L and H, different from F such that $\frac{1}{2}L + \frac{1}{2}H = F$.

The proof of this assertion utilizes Berman's equation,

$$F = \frac{1}{2\pi} \int_{-\pi}^{\pi} T_{-\lambda} A T_{\lambda} d\lambda,$$

which is valid for any projection A of C onto P_n . Here T_{λ} denotes the shift operator $(T_{\lambda}f)(x) = f(x+\lambda)$.

ASSERTION. There is a function K(x, t) of two variables such that

(i) $K(x, \cdot) \in L^1$ for each fixed x,

(ii) $K(\cdot, t) \in P_n$ for each fixed t, and

(iii) $(Lf)(x) = \int f(t)K(x, t)dt$.

This is proved by extending A to its second adjoint, and applying the Radon-Nikodym theorem to the functionals $\phi(f) = (A^{**}f)(x)$.

Let D_n denote the Dirichlet kernel. The next assertion follows from an examination of the roots of K where K is considered as a function of x.

ASSERTION. There is a function $g \in L^1$ such that $0 \le g \le 2$, and $K(x, t) = g(t)D_n(x-t)$.

ASSERTION. (i) $(1-g) \perp P_{2n}$ and (ii) $(1-g)*|D_n| = 0$ where * denotes convolution.

¹ Supported by the Air Force Office of Scientific Research.

^{*} Supported by the National Science Foundation.

⁸ Supported by a NATO Science Fellowship, granted by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).