ON GAUSSIAN SUMS

BY TAKASHI ONO

Communicated by G. D. Mostow, May 17, 1968

This note is an outline of some of the author's recent work on a generalization of Fourier transforms in adele spaces. Here we treat only the simplest case. The details and a generalization for an arbitrary ground A-field and a system of polynomials will be given elsewhere. For the unexplained notions, see [1], [2] and [3].

Let f(X) be an absolutely irreducible polynomial in $Q[X] = Q[X_1, \dots, X_n]$ such that the corresponding hypersurface $H = \{x \in \Omega^n; f(x) = 0\}$ is nonsingular, where Ω denotes a universal domain containing Q. Let V be the complement of H in Ω^n viewed as an algebraic variety in Ω^{n+1} in an obvious way. Hence the *n*-form $\omega = f^{-1}dx, dx = dx_1 \wedge \dots \wedge dx_n$, is everywhere holomorphic and never zero on V. For each valuation v of Q, denote by Q_v the completion of Q at v. Denote by A, A^* the adele ring and the idele group of Q, respectively. For an idele $a \in A^*$, $|a|_A$ will denote the module of a. The adelization V_A of V is then given by $V_A = \{x \in A^n; f(x) \in A^*\}$. We denote by $S(Q_v^n)$, $S(A^n)$ the space of Schwartz functions on Q_v^n , A^n , respectively. For each v, the *n*-form ω on V induces a measure ω_v on V_{Q_v} and we know that there is a well-defined measure dV_A on V_A of the form $\prod_v \lambda_v^{-1} \omega_v$ with $\lambda_{\infty} = 1$ and $\lambda_p = 1 - p^{-1}$. We know that the function

(1)
$$Z(f,\phi,s) = \int_{V_A} \phi(x) \left| f(x) \right|_A^s dV_A, \quad \phi \in \mathcal{S}(A^n),$$

represents a meromorphic function for Re $s > \frac{1}{2}$ having the single simple pole at s=1 with the residue $\int_{A^n} \phi(x) dA^n$, where dA^n is the canonical measure on A^n (cf. [4]).

Let χ be a basic character of A which identifies the additive group A with its own dual and let χ_{ν} be the similar character of the additive group Q_{ν} induced by χ . For each $\xi \in A$ and $\phi \in \mathfrak{S}(A^n)$, the function $\phi_{\xi}(x) = \phi(x)\chi(f(x)\xi)$ is again in $\mathfrak{S}(A^n)$ and hence we have

(2)
$$\operatorname{Res}_{s=1} Z(f, \phi_{\xi}, s) = \int_{A^n} \phi(x) \chi(f(x)\xi) dA^n \xrightarrow{\operatorname{def.}} G_f \phi(\xi).$$

The transform $\phi \rightarrow G_{\mu}\phi$ is a linear map of $S(A^n)$ into the space of con-