COHOMOLOGY OF CERTAIN STEINBERG GROUPS

BY DAVID HERTZIG

Communicated by D. Buchsbaum, March 25, 1968

In [3] Steinberg considers the relations satisfied by generators of the Chevalley groups and defines certain abstract groups Δ and Γ via presentation. Let Σ be a root system of a simple complex Lie algebra $\mathfrak{G}_{\mathbf{C}}$ and let K be a field of characteristic $p \geq 0$. We consider a set of generators $x_r(t)$ $(r \in \Sigma, t \in K)$ and the relations

(A)
$$x_r(t)x_r(u) = x_r(t+u)$$
 $(r \in \Sigma; t, u \in K),$
(B) $x_r(t)x_s(u)x_r(t)^{-1} = x_s(u)\prod x_{ir+js}(C_{ij;rs}t^iu^j)$
 $(r, s \in \Sigma, r+s \neq 0; t, u \in K).$

The product in (B) is over all integers $i, j \ge 1$ for which $ir + js \in \Sigma$, taken in lexicographic order. The $C_{ij;rs}$ are certain integers depending only on the structure of \bigotimes_C (cf. [1]). Steinberg defines $w_r(t) = x_r(t)x_{-r}(-t^{-1})x_r(t)$ and $h_r(t) = w_r(t)w_r(-1)$ $(r \in \Sigma; t \in K^*)$ and considers also the relations

(B')
$$w_r(t)x_r(u)w_r(t^{-1}) = x_{-r}(-t^{-2}u)$$
 $(r \in \Sigma; t \in K^*, u \in K),$
(C) $h_r(t)h_r(u) = h_r(tu)$ $(r \in \Sigma; t, u \in K^*).$

The Steinberg group Δ is the abstract group generated by the symbols $x_r(t)$ $(r \in \Sigma; t \in K)$ subject to the relations (A) and (B) if the rank of Σ is >1, to the relations (A) and (B') if the rank of $\Sigma = 1$. The Steinberg group Γ is the abstract group with the same generators as Δ subject to the relations of Δ and in addition subject to the relations (C).

In [1] Chevalley constructs a corresponding Lie algebra \mathfrak{G} over the field K and there is a natural action of the Steinberg groups on \mathfrak{G} . One is then led to consideration of the cohomology $H^1(\Delta, \mathfrak{G})$ and $H^1(\Gamma, \mathfrak{G})$.

The author has developed a technique for computation of such cohomology (cf. [2]). This is applied successfully to obtain the following results. Proofs will appear elsewhere.

We denote $\mathfrak{D}(K)$ the module of derivations of K. In the case of characteristic p=2 we denote $\mathfrak{L}(K)$ the K^2 -linear transformations L of K such that L(1)=0. Since p=2, $\mathfrak{D}(K) \subset \mathfrak{L}(K)$, but in general $\mathfrak{D}(K) \neq \mathfrak{L}(K)$.

THEOREM 1. $H^1(\Delta, \mathfrak{G}) = H^1(\Gamma, \mathfrak{G}) \cong \mathfrak{D}(K)$ in the following cases:

(i) type A_1 , $p \neq 2$ and $K \neq F_5$;