COHOMOLOGY OF CERTAIN STEINBERG GROUPS

BY DAVID HERTZIG
Communicated by D. Buchsbaum, March 25, 1968

In [3] Steinberg considers the relations satisfied by generators of the Chevalley groups and defines certain abstract groups Δ and Γ via presentation. Let Σ be a root system of a simple complex Lie algebra ${ }^{\mathfrak{W}} c$ and let K be a field of characteristic $p \geqq 0$. We consider a set of generators $x_{r}(t)(r \in \Sigma, t \in K)$ and the relations
(A) $x_{r}(t) x_{r}(u)=x_{r}(t+u) \quad(r \in \Sigma ; t, u \in K)$,
(B) $x_{r}(t) x_{s}(u) x_{r}(t)^{-1}=x_{s}(u) \prod x_{i r+j s}\left(C_{i j ; r s} t^{i} u^{j}\right)$

$$
(r, s \in \Sigma, r+s \neq 0 ; t, u \in K)
$$

The product in (B) is over all integers $i, j \geqq 1$ for which $i r+j s \in \Sigma$, taken in lexicographic order. The $C_{i j \text {;rs }}$ are certain integers depending only on the structure of \mathbb{F}_{C} (cf. [1]). Steinberg defines $w_{r}(t)$ $=x_{r}(t) x_{-r}\left(-t^{-1}\right) x_{r}(t)$ and $h_{r}(t)=w_{r}(t) w_{r}(-1) \quad\left(r \in \Sigma ; t \in K^{*}\right)$ and considers also the relations
($\left.\mathrm{B}^{\prime}\right) w_{r}(t) x_{r}(u) w_{r}\left(t^{-1}\right)=x_{-r}\left(-t^{2} u\right) \quad\left(r \in \Sigma ; t \in K^{*}, u \in K\right)$,
(C) $h_{r}(t) h_{r}(u)=h_{r}(t u) \quad\left(r \in \Sigma ; t, u \in K^{*}\right)$.

The Steinberg group Δ is the abstract group generated by the symbols $x_{r}(t)(r \in \Sigma ; t \in K)$ subject to the relations (A) and (B) if the rank of Σ is >1, to the relations (A) and (B^{\prime}) if the rank of $\Sigma=1$. The Steinberg group Γ is the abstract group with the same generators as Δ subject to the relations of Δ and in addition subject to the relations (C).

In [1] Chevalley constructs a corresponding Lie algebra (G) over the field K and there is a natural action of the Steinberg groups on (©). One is then led to consideration of the cohomology $H^{1}(\Delta$, (J) and $H^{1}(\Gamma$, (3) $)$.

The author has developed a technique for computation of such cohomology (cf. [2]). This is applied successfully to obtain the following results. Proofs will appear elsewhere.

We denote $\mathscr{D}(K)$ the module of derivations of K. In the case of characteristic $p=2$ we denote $\mathcal{L}(K)$ the K^{2}-linear transformations L of K such that $L(1)=0$. Since $p=2, D(K) \subset \mathscr{L}(K)$, but in general $\mathscr{D}(K) \neq \mathscr{L}(K)$.

Theorem 1. $H^{1}(\Delta, \mathbb{B})=H^{1}(\Gamma, \mathbb{S}) \cong \mathscr{D}(K)$ in the following cases:
(i) type $A_{1}, p \neq 2$ and $K \neq F_{5}$;

