RIESZ OPERATORS AND FREDHOLM PERTURBATIONS

BY MARTIN SCHECHTER

Communicated by B. Yood, June 21, 1968

1. Introduction. Let X be a Banach space, and let B(X) denote the space of bounded linear operators on X. An operator $A \in B(X)$ is called a *Fredholm operator* if

1. $\alpha(A)$, the dimension of the null space N(A) of A, is finite;

2. the range R(A) of A is closed in X;

3. $\beta(A)$ the codimension of R(A), is finite.

The set of Fredholm operators on X is denoted by $\Phi(X)$. An operator $E \in B(X)$ is called a *Riesz operator* if $E - \lambda \in \Phi(X)$ for all scalars $\lambda \neq 0$. For further discussion of such operators we refer to [1, p. 323], [2], [3], [4], [5], [9].

An operator $E \in B(X)$ is called a *Fredholm perturbation* if $A + E \in \Phi(X)$ for all $A \in \Phi(X)$. In this paper we investigate the connection between Riesz operators and Fredholm perturbations. Our work complements the results of [2], [3] and [6].

2. Riesz operators. Let R(X) denote the set of Riesz operators on X.

LEMMA 1. $E \in R(X)$ if and only if $I + \lambda E \in \Phi(X)$ for all scalars λ .

PROOF. If $E \in R(X)$, the statement is true for $\lambda = 0$. Otherwise $E + I/\lambda \in \Phi(X)$. Hence $I + \lambda E \in \Phi(X)$. Conversely, if $\mu \neq 0$, then $\mu(I + E/\mu) \in \Phi(X)$ showing that $E + \mu \in \Phi(X)$.

The set K(X) of compact operators on X is a closed, two-sided ideal in B(X). Let π be the natural quotient map of B(X) into B(X)/K(X).

LEMMA 2 [7]. $A \in \Phi(X)$ if and only if $\pi(A)$ is invertible in B(X)/K(X).

LEMMA 3 [9], [1]. $E \in R(X) \Leftrightarrow ||\pi(E)^n||^{1/n} \to 0 \text{ as } n \to \infty$.

For any two operators A, $B \in B(X)$ we shall write $A \cup_{\pi} B$ when AB - BA is a compact operator on X. The reason for the notation is that $\pi(AB) = \pi(BA)$ in this case. Such operators are said to "almost commute."

LEMMA 4. If $E \in R(X)$ and $K \in K(X)$, then $E + K \in R(X)$.

PROOF. $\pi(E+K-\lambda) = \pi(E-\lambda)$.