ON THE CHARACTERISTIC ROOTS OF TOURNAMENT MATRICES

BY ALFRED BRAUER¹ AND IVEY C. GENTRY¹

Communicated by Gian-Carlo Rota, July 15, 1968

A tournament matrix $A = (a_{ij})$ of order *n* is a matrix of zeros and ones whose main diagonal elements are zeros and all other elements satisfy $a_{ij}+a_{ji}=1$ for $i \neq j$. See, for instance [5].

Such matrices have recently been studied in a large number of papers. But not much seems to be known about their characteristic roots. Since they are nonnegative matrices whose two greatest row-sums are less than or equal to n-1 and n-2, respectively, it follows from [2] that they lie in the interior or on the boundary of the circle

$$|z| \leq ((n-1)(n-2))^{1/2}.$$

In this paper, this result will be improved.

THEOREM. Let A be a tournament matrix of order n with characteristic roots $\omega_1, \omega_2, \cdots, \omega_n$, and $R(\omega_r)$ the real part of ω_r . Assume that

$$|\omega_1| \ge |\omega_2| \ge \cdots \ge |\omega_n|.$$

Then

$$-\frac{1}{2} \leq R(\omega_{\nu}) \leq \frac{1}{2} (n-1),$$

and more exactly

$$\omega_1 \leq \frac{1}{2}(n-1)$$
 and $|\omega_\nu| \leq \left(\frac{n(n-1)}{2\nu}\right)^{1/2}$ for $\nu \geq 2$.

PROOF. Let B be the symmetric matrix $\frac{1}{2}(A+A')$. All its main diagonal elements are zeros and all other elements equal $\frac{1}{2}$. Since B is a generalized stochastic matrix with row-sum $\frac{1}{2}(n-1)$, its greatest root is $\frac{1}{2}(n-1)$. Moreover, it follows from [3] that the nontrivial roots remain unchanged if we subtract from all the elements of each column the number $\frac{1}{2}$. We obtain the diagonal matrix $D(-\frac{1}{2}, -\frac{1}{2}, \cdots, -\frac{1}{2})$. Hence B has the root $\frac{1}{2}(n-1)$ and n-1 roots $-\frac{1}{2}$.

In 1902, I. Bendixson [1] proved the following theorem.

Let T be a matrix with real elements, S the symmetric matrix $\frac{1}{2}(T+T')$, and M and m the maximum and the minimum of the char-

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant number 982-67.