ON THE CHARACTERISTIC ROOTS OF TOURNAMENT MATRICES

BY ALFRED BRAUER ${ }^{1}$ AND IVEY C. GENTRY ${ }^{1}$

Communicated by Gian-Carlo Rota, July 15, 1968
A tournament matrix $A=\left(a_{i j}\right)$ of order n is a matrix of zeros and ones whose main diagonal elements are zeros and all other elements satisfy $a_{i j}+a_{j i}=1$ for $i \neq j$. See, for instance [5].

Such matrices have recently been studied in a large number of papers. But not much seems to be known about their characteristic roots. Since they are nonnegative matrices whose two greatest rowsums are less than or equal to $n-1$ and $n-2$, respectively, it follows from [2] that they lie in the interior or on the boundary of the circle

$$
|z| \leqq((n-1)(n-2))^{1 / 2}
$$

In this paper, this result will be improved.
Theorem. Let A be a tournament matrix of order n with characteristic roots $\omega_{1}, \omega_{2}, \cdots, \omega_{n}$, and $R\left(\omega_{\nu}\right)$ the real part of ω_{v}. Assume that

$$
\left|\omega_{1}\right| \geqq\left|\omega_{2}\right| \geqq \cdots \geqq\left|\omega_{n}\right| .
$$

Then

$$
-\frac{1}{2} \leqq R\left(\omega_{\nu}\right) \leqq \frac{1}{2}(n-1),
$$

and more exactly

$$
\omega_{1} \leqq \frac{1}{2}(n-1) \quad \text { and } \quad\left|\omega_{p}\right| \leqq\left(\frac{n(n-1)}{2 \nu}\right)^{1 / 2} \quad \text { for } \quad \nu \geqq 2
$$

Proof. Let B be the symmetric matrix $\frac{1}{2}\left(A+A^{\prime}\right)$. All its main diagonal elements are zeros and all other elements equal $\frac{1}{2}$. Since B is a generalized stochastic matrix with row-sum $\frac{1}{2}(n-1)$, its greatest root is $\frac{1}{2}(n-1)$. Moreover, it follows from [3] that the nontrivial roots remain unchanged if we subtract from all the elements of each column the number $\frac{1}{2}$. We obtain the diagonal matrix $D\left(-\frac{1}{2},-\frac{1}{2}, \cdots,-\frac{1}{2}\right)$. Hence B has the root $\frac{1}{2}(n-1)$ and $n-1$ roots $-\frac{1}{2}$.

In 1902, I. Bendixson [1] proved the following theorem.
Let T be a matrix with real elements, S the symmetric matrix $\frac{1}{2}\left(T+T^{\prime}\right)$, and M and m the maximum and the minimum of the char-

[^0]
[^0]: ${ }^{1}$ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant number 982-67.

