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Since the factors in the first two sets of brackets are finite Blaschke 
products and the zero in the third is a convex combination of such, 
and since the coefficients are nonnegative and sum to 1, the proof is 
complete. 
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I. The problem of this investigation is to characterize those small 
categories X for which the inverse limit 

proj lim: ABX -+ AB 
x 

is exact. Here AB is the category of abelian groups, and ABX is the 
category of functors from X to AB. In this context I conjecture the 
following 

THEOREM I. Let X be a small category. Then the following assertions 
are equivalent: 

(1) The inverse limit proj limx: ABX-^AB is exact 
(2) For every abelian category SÏ with exact direct products y the inverse 

limit proj lim* : %x—»3I is exact. 
(3) Every connected component Y of X contains an object y together 

with an endomorphism eÇz Y (y, y) such that the following properties are 
satisfied: 

(i) y is a smallest object of F, i.e., for any object zÇzY there is a 
morphism y—>z. 

(ii) e equalizes any two morphisms with the same codomain and 
domain y, i.e., any diagram y-£±ylXz is commutative. 

At present, I can prove the equivalence of (1) and (2) and the 
implication (3)Z£(1) in general, i.e., without any additional condition 
on X. The implication (1)Z£(3) holds at least if one of the following 
conditions on X is satisfied : 


