HOMOTOPY-EVERYTHING H-SPACES

BY J. M. BOARDMAN AND R. M. VOGT
Communicated by F. P. Peterson, May 24, 1968

An H-space is a topological space X with basepoint e and a multiplication map $m: X^{2}=X \times X \rightarrow X$ such that e is a homotopy identity element. (We take all maps and homotopies in the based sense. We use k-topologies throughout in order to avoid spurious topological difficulties. This gives function spaces a canonical topology.) We call X a monoid if m is associative and e is a strict identity.

In the literature there are many kinds of H-space: homotopyassociative, homotopy-commutative, A_{∞}-spaces [3], etc. In the last case part of the structure consists of higher coherence homotopies. In this note we introduce the concept of homotopy-everything H-space (E-space for short), in which all possible coherence conditions hold. We can also define E-maps (see $\S 4$). Our two main theorems are Theorem A, which classifies E-spaces, and Theorem C, which provides familiar examples such as $B P L$. Many of the results are folk theorems. Full details will appear elsewhere.

A space X is called an infinite loop space if there is a sequence of spaces X_{n} and homotopy equivalences $X_{n} \simeq \Omega X_{n+1}$ for $n \geqq 0$, such that $X=X_{0}$.

Theorem A. A CW-complex X admits an E-space structure with $\pi_{0}(X) a$ group if and only if it is an infinite loop space. Every E-space X has a "classifying space" BX, which is again an E-space.

1. The machine. This constructs numerous E-spaces.

Consider the category \mathfrak{g} of real inner-product spaces of countable (algebraic) dimension and linear isometric maps between them. As examples we have R^{∞} with orthonormal base $\left\{e_{1}, e_{2}, e_{3}, \cdots\right\}$, and its subspace R^{n} with base $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$, which is all there are up to isomorphism. We topologize $\mathfrak{g}(A, B)$, the set of all isometric linear maps from A to B, by first giving A and B the finite topology, which makes each the topological direct limit of its finite-dimensional subspaces.

Lemma. The space $\mathfrak{g}\left(A, R^{\infty}\right)$ is contractible.
This is a consequence of two easily constructed homotopies:
(a) $i_{1} \simeq i_{2}: A \rightarrow A \oplus A$,
(b) $i_{1} \simeq u: R^{\infty} \rightarrow R^{\infty} \oplus R^{\infty}$, for some isomorphism u.

